京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我是一个数据分析师。
准确来说我是一个当年只会Excel数据透视表,就天不怕地不怕地来当数据分析师的人。当年的某一天,我的老板Q我:
小李啊,销售部门给我提交了一份上周的数据,你帮我看看,有什么规律啊?
我迅速打开了表格,详细地把每个地域、产品、销售阶段、收入和完成情况都计算、汇总并生成了数据透视表,如下图所示:
这下够清楚了吧?拿给老板,我就能升职加薪,迎娶白富美,出任CDO。然而我拿到了老板的办公室,老板瞥了一眼,紧皱了一下眉头,说道:整理的数据维度很清楚,但是能不能换一种更直观、更易读的数据展现方法?
好吧,故天将降大任于斯人也,必先苦其心志劳其心骨。我开始回去苦思冥想,查阅资料,寻找课程。偶然间,我发现了一款神器Power BI,它好像打通了我的任督二脉,瞬间我被它强大的功能吸引了,原来数据分析还可以这样做,Excel还可以这样用。
于是,经过努力,之前丑陋的报表华丽变身为一份足具商业洞察力的交互式可视化分析仪:
经过Excel高级处理后得到的以销售管理分析仪为基础的交互式销售管理分析仪,可以更加直观、动态地分析出企业在各产品、地域、行业、领域的变化以及变化的原因,以便提前洞察商机风险,制定对策,实现成功率最大化。获得了老板和同事们的一致认可。
同时,通过学习我才感受到了Excel的强大之处和无所不能的地方,说到爬虫,你可能会想到Python,想到R,但是你可能不知道还有一种无须太多编程即可实现爬虫的工具Power query。说到地图,你可能会想到R的ggplot,echart,Python的matplotlib,seaborn,pyechart等,但是你可能不知道有一款强大易用的地图可视化工具Power map。同时结合Power Query和Power Pivot,你可以实现炫酷的商业智能分析效果。
比如下图:使用Excel平台实现“爬数+处理+三维数据地图展现
说到这里,你可能想问:到底什么是Power BI?
简单来说,Power BI是微软为强化自身产品商业智能功能而开发的工具集。其中供Excel使用的主要插件工具包括Power Query、 Power Pivot、 Power View及PowerMap等。这些插件工具均由微软免费提供,适用于Excel 2010以上版本。Power BI插件帮助Excel完成从表格工具到BI工具的华丽转变。
具体来说,Power BI家族主要有以下几位成员,它们各自在Excel商业智能实践发挥了重要的作用:
Power Query:探索商业规律的前奏
Power Query是Power BI系列插件中的一款重要插件,用以弥补传统Excel功能在数据处理方面的不足,尤其可以帮助Excel完成数据处理量上的极限突破。
Power Pivot:挖掘并发掘商业秘密
Power Pivot: “工具如其名” ,是一款加强版的数据透视工具。它不仅拥有比传统数据透视表更加强大灵活的计算分析能力,还可以导入并关联多种不同数据源的大量数据,并在内存中创建自己的多维数据模型。(下图为多维数据集搭建环境)
Power View +Power Map:发现商业之美
Power Map是微软在高版本Excel中推出的一个功能强大的加载项,结合Bing地图,支持用户绘制可视化的地理和时态数据,并用3D方式进行分析。(下图为Power Map制作静态地图展示)
Power View则帮助我们快速简单地制作仪表盘,功能上类似于Excel中的数据透视图表与切片器的组合工具,可以对数据进行快速筛选查看,还可以用它制作出功能丰富的动态图表。(下图为餐饮业分析仪展示)
简直不要太炫酷,随着大数据时代的到来,企业管理者对数据价值的重视度越来越高,他们渴望从企业内外部数据中获得更多的信息财富,并以此为依据,帮助自己做出正确的战略决策。在此种大环境下,缺乏洞察力的传统业务报表已经开始无法满足复杂市场环境中的企业决策需求,在很多企业中,“能否基于业务分析提供更具商业洞察力的数据信息”正在逐步取代“能否准确、及时地提供业务报表”成为考核业务人员能力的重要参考指标。
这时候就需要业务人员强化以下两类能力:
1. 强化所从事业务工作中的相关知识以及与该业务知识相关的其他扩展知识;
2. 强化对工作中使用工具的驾驭能力:考虑到目前70%~80%业务人员在业务分析中所使用的工具都是Excel+SQL,因此,为了能够在业务工作中脱颖而出,你需要把Excel和SQL玩出水平。
如何把EXCEL和SQL玩出水平,下面的课程可能是比较快速的入门方法:
CDA数据分析师推出「业务数据分析师」课程,内容包含Excel商业分析、Tableau商业智能、可视化技能、数据库管理(Mysql)、统计理论方法、数据分析软件应用(SPSS)、SPSS建模在内的内容,结合银行、电商、零售等行业需求,采用实际案例教学来提高课程的实用性。
停止犹豫,迈出第一步,无需编程基础,挑战商业分析实战项目!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27