
我是一个数据分析师。
准确来说我是一个当年只会Excel数据透视表,就天不怕地不怕地来当数据分析师的人。当年的某一天,我的老板Q我:
小李啊,销售部门给我提交了一份上周的数据,你帮我看看,有什么规律啊?
我迅速打开了表格,详细地把每个地域、产品、销售阶段、收入和完成情况都计算、汇总并生成了数据透视表,如下图所示:
这下够清楚了吧?拿给老板,我就能升职加薪,迎娶白富美,出任CDO。然而我拿到了老板的办公室,老板瞥了一眼,紧皱了一下眉头,说道:整理的数据维度很清楚,但是能不能换一种更直观、更易读的数据展现方法?
好吧,故天将降大任于斯人也,必先苦其心志劳其心骨。我开始回去苦思冥想,查阅资料,寻找课程。偶然间,我发现了一款神器Power BI,它好像打通了我的任督二脉,瞬间我被它强大的功能吸引了,原来数据分析还可以这样做,Excel还可以这样用。
于是,经过努力,之前丑陋的报表华丽变身为一份足具商业洞察力的交互式可视化分析仪:
经过Excel高级处理后得到的以销售管理分析仪为基础的交互式销售管理分析仪,可以更加直观、动态地分析出企业在各产品、地域、行业、领域的变化以及变化的原因,以便提前洞察商机风险,制定对策,实现成功率最大化。获得了老板和同事们的一致认可。
同时,通过学习我才感受到了Excel的强大之处和无所不能的地方,说到爬虫,你可能会想到Python,想到R,但是你可能不知道还有一种无须太多编程即可实现爬虫的工具Power query。说到地图,你可能会想到R的ggplot,echart,Python的matplotlib,seaborn,pyechart等,但是你可能不知道有一款强大易用的地图可视化工具Power map。同时结合Power Query和Power Pivot,你可以实现炫酷的商业智能分析效果。
比如下图:使用Excel平台实现“爬数+处理+三维数据地图展现
说到这里,你可能想问:到底什么是Power BI?
简单来说,Power BI是微软为强化自身产品商业智能功能而开发的工具集。其中供Excel使用的主要插件工具包括Power Query、 Power Pivot、 Power View及PowerMap等。这些插件工具均由微软免费提供,适用于Excel 2010以上版本。Power BI插件帮助Excel完成从表格工具到BI工具的华丽转变。
具体来说,Power BI家族主要有以下几位成员,它们各自在Excel商业智能实践发挥了重要的作用:
Power Query:探索商业规律的前奏
Power Query是Power BI系列插件中的一款重要插件,用以弥补传统Excel功能在数据处理方面的不足,尤其可以帮助Excel完成数据处理量上的极限突破。
Power Pivot:挖掘并发掘商业秘密
Power Pivot: “工具如其名” ,是一款加强版的数据透视工具。它不仅拥有比传统数据透视表更加强大灵活的计算分析能力,还可以导入并关联多种不同数据源的大量数据,并在内存中创建自己的多维数据模型。(下图为多维数据集搭建环境)
Power View +Power Map:发现商业之美
Power Map是微软在高版本Excel中推出的一个功能强大的加载项,结合Bing地图,支持用户绘制可视化的地理和时态数据,并用3D方式进行分析。(下图为Power Map制作静态地图展示)
Power View则帮助我们快速简单地制作仪表盘,功能上类似于Excel中的数据透视图表与切片器的组合工具,可以对数据进行快速筛选查看,还可以用它制作出功能丰富的动态图表。(下图为餐饮业分析仪展示)
简直不要太炫酷,随着大数据时代的到来,企业管理者对数据价值的重视度越来越高,他们渴望从企业内外部数据中获得更多的信息财富,并以此为依据,帮助自己做出正确的战略决策。在此种大环境下,缺乏洞察力的传统业务报表已经开始无法满足复杂市场环境中的企业决策需求,在很多企业中,“能否基于业务分析提供更具商业洞察力的数据信息”正在逐步取代“能否准确、及时地提供业务报表”成为考核业务人员能力的重要参考指标。
这时候就需要业务人员强化以下两类能力:
1. 强化所从事业务工作中的相关知识以及与该业务知识相关的其他扩展知识;
2. 强化对工作中使用工具的驾驭能力:考虑到目前70%~80%业务人员在业务分析中所使用的工具都是Excel+SQL,因此,为了能够在业务工作中脱颖而出,你需要把Excel和SQL玩出水平。
如何把EXCEL和SQL玩出水平,下面的课程可能是比较快速的入门方法:
CDA数据分析师推出「业务数据分析师」课程,内容包含Excel商业分析、Tableau商业智能、可视化技能、数据库管理(Mysql)、统计理论方法、数据分析软件应用(SPSS)、SPSS建模在内的内容,结合银行、电商、零售等行业需求,采用实际案例教学来提高课程的实用性。
停止犹豫,迈出第一步,无需编程基础,挑战商业分析实战项目!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26