
无论是哪个行业的工作者,都会有自己行业擅长的领域,以及需要具备的技能。对于一位数据分析师来说也是如此,只有掌握一些必备的技能,才能顺利地完成相应的数据分析工作。那么大家知道数据分析师必备技能都有哪些吗?下面就挑其中最重要、也是最常用的两个技能来为大家介绍一下。
1.数据分析师必备技能之编程
既然是做数据分析工作,那么肯定就要有数据才行,可是数据从哪里来呢?当然需要从互联网上获取。我们需要的信息、数据就是从互联网经过滤处理提取而来的。数据获取这一过程就要用到Python爬虫,爬虫主要就是为数据分析中的数据获取来提供帮助的,而Python就是编程语言的一种。
编程知识的难度是比较大的,对于数据分析师来说,如果能够掌握编程这项技能,那么学习其他知识的时候也会更加轻松。如果想要成为一位高级数据分析师的话,那么一定要学会编程知识,这也是初级数据分析师和高级数据分析师的重要区别之一。数据分析师主要学习的编程语言为Python和R语言。其中Python是目前比较流行的编程语言之一,可用性较高,却学习难度适中,很适合入门者学习。而R语言更适合统计分析、绘图,都很适合数据分析师学习并掌握。
2.数据分析师必备技能之SQL
在学会编程语言之后,就可以着手开始学习SQL了。SQL其实就是数据库,数据分析师既然是跟数据打交道,那么就免不了要使用数据库。就目前而言,普遍使用的数据库主要有四种:分别是SQLite、MySQL、MongoDB、Redis。其中SQLite是一个文件型轻量级数据库,它的特点处理速度很快,更适合在数据量不是很大的情况下使用SQLite;MongoDB是一个面向文档的非关系型数据库,功能强大、灵活、易于拓展;Redis是一个使用ANSIC编写的高性能key-value数据库,使用内存作为主存储器;MySQL是一个应用极其广泛的关系型数据库,它是开源免费的,可以支持大型数据库,很多中小型企业使用的都是MySQL。
以上就是为大家介绍的数据分析师必备的两种技能,分别是编程和数据库。其中编程语言的学习是有一定难度的,但是只要掌握之后,再学习其他的一些知识就会更简单一些,更容易理解和应用。另外,在上文也为大家简单介绍了一下当前使用率较高的四种数据库,大家可以根据公司企业的规模,或是自己的具体需求有选择性地学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10