京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析行业由来已久,现代的数据分析大多指的是由互联网行业衍生来的全新的数据分析。作为一名数据分析师,不仅可以获得较高的薪水报酬,还能近距离接触“黑科技”。同时,还能让人觉得非常的高大上呢!因此,现在越来越多的人选择数据分析师作为自己职业生涯的长远规划。然而,想成为合格优秀的数据分析师并不那么简单,优秀的数据分析师是这样炼成的......
首先给大家说一下什么人适合学习数据分析?我们从数据分析的培训班的角度来说,很多数据分析的学员都是有一定的学历的,大多数都是专科以上。这些人一般都学过统计学的知识,这样对于数据分析知识有一定的基础,但是如果没有学过统计学,那么学数据分析就有点困难了,大家如果想学数据分析,一定要提前了解一下统计学的知识,有了这些知识之后,学起数据分析才能更容易。如果想要学的好,还需要一点天赋和兴趣,如果对数据敏感的话那是更好,这些都是经过后天培养的,就看看自己愿不愿意了。
一般来说,数据分析师有两种,一种就是做数据挖掘工作,一种就是数据分析工作,数据挖掘工作的数据分析工程师在专门的挖掘团队里面从事数据挖掘和分析工作的。如果能在这类专业团队学习成长,能力就能够飞速的提高。不过要想进入这种团队的门槛是需要扎实的数据挖掘知识、挖掘工具应用经验和编程能力。所以说,这些知识都是需要大家仔细学习的。而数据分析工作的数据分析师就是在各业务团队或者运营部门的数据分析师,可以说这些数据分析师就是业务团队的一员。这些人的工作就是支撑业务运营,该类型分析师偏向产品和运营,可以转向做运营和产品。
那么数据分析师行业怎么选择呢?首先,数据分析师最理想的行业就是在互联网行业,就目前而言,互联网行业是数据分析应用最广的行业,其中的电商企业,更是目前最火的,而且企业也更重视数据分析的价值,是数据分析师理想的成长平台。如果不想进入互联网行业,就可以进入是咨询公司,他们需要数据分析人才,而且相对来说,数据分析师在咨询公司成长的速度更快,专业也会更全面。金融行业也是一个不错的要求,比如银行和证券等行业,该行业对数据分析的依赖需求,越来越大。电信行业,它们拥有海量的数据,在严峻的竞争下,也越来越重视数据分析,但进入这些公司的门槛比较高。
通过上述文章的介绍,相信大家对于如何成为一个合格优秀的数据分析师这个问题一定有了自己的看法和答案了。不难看到,想要成为一个好的数据分析师真的不是那么容易,虽然说这个岗位不是一个单纯的技术岗,但对于技术的要求也不低,如果大家有兴趣往这一方面发展的话,一定要做好吃苦的准备。不过苦尽甘来,但你熬过那段岁月,学有所成之时,你一定会为自己感到自豪的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27