
本篇文章将以数据产品的角度来看数据采集后数据流的处理过程;并讲解一丢丢偏技术、但与数据产品产出息息相关的数据仓库。
一. 数据处理过程
数据产品经理的工作中一大部分都是将不可估测的数据转化为可见的报表、有结论意义的分析报告——也就是将数据从各种异构的数据源中、汇总,最终展示为报表、仪表盘、动态数据分析查询、结论性的分析报告等等。
1. 有哪些异构数据源呢?
服务端、客户端用户行为日志用户的历史信息,定性信息(e.g.性别,职业的用户画像数据),定量信息(e.g.近30天的某个兴趣倾向程度)第三方等获取的信息,e.g.爬虫数据、人工整理的数据等等
2. 这信息大都需要二次加工、清洗,生成结构化的数据
脏数据的清洗、整合,e.g.延迟数据的按照发生日归纳;生成基础性的表,以提高数据的易用性,e.g.用户基础数据、行为数据的基础表;生成可以直接应用于报表、分析的用户&行为结构化业务应用表;
轻描淡写的2个步骤,却是影响报表展示、分析结论的关键点,也是数据产品经理最需要细心处理的地方。
二. 数据仓库(Data Warehouse)
数据处理过程往往比较模糊,但“异构数据源->结构化的数据表->报表/分析报告”的过程中,我们常见的各种数据库表就是数据仓库的实体,如常见的hive,spark,Oracle等。那在数据产品经理日常数据处理中应该注意哪些数据仓库知识点呢?
1. 数据仓库分层
为什么要做分层呢?
更清晰的管理、追踪数据(清洗的数据结构、明确的血缘关系):有助于我们去查找数据处理的整条链路;通过建立通用的中间表,减少重复计算:一张通用的中间表,能够有效提供能够直接贡献于下游业务数据表,以避免每次都从原数据中产出业务数据表;清晰的数据仓库分层,将能够有助于我们分解数据处理过程:将复杂的数据->业务应用,拆解成多个步骤,每一层只处理单一的步骤;
数据分层具体是指?每一层应该注意什么呢?
操作数据层(ODS,Operational Data Store):该层级的数据,最接近数据源的原始面貌(内容和粒度与原始数据一致),通常是数据源直接经过ETL后,存储于此。从原始数据到ODS层,不建议做复杂的数据清洗,以免破坏原始数据,引起不必要的排查成本。
建议仅进行——
将json记录的日志,映射到各字段中;作弊数据的清洗;数据转码:将编码映射成具有真实含义的值数据标准化,e.g.把所有的日期都格式化成YYYY-MM-DD的格式;异常值修复,e.g.视频播放表:(包含用户id、视频id、播主、播放时间等)。
如果一个表划分为ODS层,那么一定要确认是否将原数据的有意义字段均清洗过来。
明细数据层(DWD,Data Warehouse Detail):对ODS层做一些业务层面的数据清洗和规范化的操作,e.g.用户播放视频的日志级表;
如果一个表划分为DWD层,是否清晰、明确的记录了业务层面的明细数据?
汇总数据层(DWS, Data Warehouse Summary):依据业务需求对ODS/DWD层的数据进行了汇总,e.g.带有用户画像信息的播放视频;
如果是DWS层的表,是否能够有效、便利的服务于业务方向统计需求?
应用数据层(ADS,Application Data Store):业务需要进行的统计数据结果,e.g.各类型用户的视频播放统计。
如果是ADS层的表,是否能够得到业务需要的统计数据?
维度表(DIM):存放基础信息,如用户属性表-性别、年龄等等。
如果是DIM层的表,是否全面记录了后续分析或统计需要用的各个维度?
除了固定为分层外,当然还有临时表(TEM)。
阿里/华为的数据仓库数据分级:操作数据层(ODS)、明细数据层(DWD)、汇总数据层(DWS)和应用数据层(ADS),维度表(DIM); 操作数据层、明细数据层、汇总数据层都是公共数据层。
此外,涉及表时,需要充分考虑这张表后续是哪个角色的同学使用,表是否足够易用?是否内容冗余?是否安全?
业务线的同学是否能够通过几条简单的SQL语句,拿到数据结果?可以通过单张表格统计到数据还是需要多表关联获取?单张表是不是内容冗余,是否会影响查询效率?多表关联时,是否会有业务理解上的坑,e.g.多表间的字段是一对一,一对多,还是多对多,如何让使用者清晰的理解?表中是否涉及敏感的字段,比如金额等,使用群体是否有足够的权限获取这些信息?
2. 元数据管理
元数据及应用也是数据仓库的重要组成部分,它是描述数据的数据(data about data),描述数据的属性信息,可以帮助我们非常方便地找到他们所关心的数据。
元数据记录了哪些信息?
数据的表结构:字段信息、分区信息、索引信息等;数据的使用&权限:空间存储、读写记录、修改记录、权限归属、审核记录等其他信息;数据的血缘关系信息:血缘信息简单的说就是数据的上下游关系,数据从哪里来到哪里去?我们通过血缘关系,可以了解到建立起生产这些数据的任务之间的依赖关系,进而辅助调度系统的工作调度,或者用来判断一个失败或错误的任务可能对哪些下游数据造成影响等等;而在数据排查过程中也可以帮助我们定位问题。数据的业务属性信息:记录这张表的业务用途,各个字段的具体统计口径、业务描述、历史变迁记录、变迁原因等。这部分数据多是我们手动填写,但却能大大提升数据使用过程中的便利性。
此外,根据数据实时性,数据仓库可以分为离线数据仓库、实时数据仓库。
离线数据仓库主要记录t-1以上的数据,以天、周、月数据计算为主;实时数据仓库是随着人们对实时数据展示、分析、算法的需求而出现的。
4. 总结
数据处理过程是数据产品经理 产出报表、分析报告耗时最久的部分,了解数据仓库的概念&关键点,有助于我们清晰、有效的处理数据,提高工作效率,将更多的时间用于业务洞察。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16