
数据质量,是企业数据分析系统建设过程中,一个非常重要的方面,但恰恰也是常常没有引起足够重视的方面。在服装行业的企业中,此问题也是非常的明显。数据质量将影响到企业分析应用内容的建设,以及分析结果的准确性与可靠性,有句俗语“垃圾入,垃圾出”便是说的此种情况;
首先,看看零售数据采集的缺失。
在当前服装行业的品牌商企业中,采用代理、加盟方式或与直营混合经营的模式是极为普遍的。站在品牌商总体角度上来看,代理商、加盟店这部分的数据,往往成为了企业全盘运营的一个数据黑洞。品牌商管理者总是会期望能够实现“全国一盘棋”的效果,了解商品的流转与零售状况,从全局的角度优化商品的配置,从而提高销售机会,减少库存。
很具体的一个例子,便是计算某款商品的整体零售售罄率,许多时候,由于代理加盟数据的缺失,便以代理加盟的发货数据替换其零售,零售售罄率便变为总体的消化率。诚然,批发模式下,品牌商可以通过控制退换货比例等方式降低风险,但假若商品在渠道形成较大积压,将造成一种不健康的循环。因此,POS系统,将终端零售数据的采集上收,是极有必要的。
通常,大型的或是强势的品牌,能够稍好的收集各个零售终端的数据,用于商品销售分析,从而进行快速反应,或是商品的调配。而相对其他一些中型或是中大型的品牌商,非直营线数据的采集,更是一个难题。有人曾开玩笑说,那些一直不肯使用POS系统的客户,要不就是太聪明,不期望数据被掌握,要不就是意识太落后,了解不到信息系统的益处。
真正管理严格的企业,哪怕是系统的缺失,他也会想尽办法将尽可能多的终端零售业务数据采集,手工填报、短信报送等等手段不限。事实上,数据的采集,对于客户来说,可以不要仅仅视其为义务,亦可从其享受到相应的权利。从数据运用的角度,能够为客户们带来哪些辅助呢?大致可以有订货会规划测算、季中商品结构分析、畅滞销款的分析、辅助补货或是商品在客户间的盘活。通过这些方面的工作,提升商品的销售、减少库存积压和缺货情况的发生、提高资金的周转效率。
接着,再看看数据上来之后,又可能会存在哪些方面的质量问题,先举几个例子。
单据日期错误,非直营终端多有出现,直营终端偶尔出现,我看到过二零五几年的单据。
数值错误,零售小票中零售金额或者零售数量大幅度的偏差,曾有见过将商品代码录作零售金额的,由于对账原因,此种情况直营终端倒是几乎不会出现。
合并单据,有的终端,一天就录上一两笔交易小票。
以上种种问题数据,如果没有经过专门的数据质量问题的识别与清洗,直接进入分析阶段,那么导致的结果可想而知。业绩不准,商品关联关系失真等问题是必然的,在不知的情况下,甚至有可能做出不恰当的决策。因此,在做数据分析或是类似系统建设的过程中,定要对数据进行质量的探查,异常数据的分析与处理,改善数据质量,提升分析效果。
以上聊到的均是零售数据方面的一些问题,实际上,企业运营的方方面面,均是面临数据质量问题。譬如,企业期望从年、季、波段、品类、故事、系列、面料、主题、款类、上下装、内外搭等角度对商品进行全面综合的分析,但是商品档案拿过来一看,现实与期望相去甚远,属性要不是没有设置,就是大片大片的未定义,在完善数据之前,是会让用户失望一阵子了。
当今,精细化管理的概念一提再提,作者认为,精细化管理,需要依托于精细化的分析。而精细化分析的基石——数据,一定是有质量保障的数据。在此,希望更多的服装企业能够更加重视数据质量的改善,获得更优质的数据分析效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-07CDA 一级考试内容详解 CDA(Certified Data Analyst)即数据分析师认证,一级考试作为该认证体系中的入门级别考试,主要面向零基 ...
2025-08-07中介分析的 SPSS 结果解读:从原理到实践 在社会科学、医学、心理学等领域的研究中,变量之间的关系往往并非简单的直接影响,而 ...
2025-08-07