
神经网络的关键是什么
相对于传统的线性和非线性方法,为什么神经网络会如此强大?
当你有一个线性模型,每一个功能要么对你有帮助,要么对你有伤害,这种假设是线性模型中固有的。因此线性模型要么功能异常强大,用类1表示;要么则毫无用处,用类2表示。所有的解决方案,要么导致该功能获得巨大的价值;要么价值变得微不足道。你永远不会有这么一个状态说,在这个区间,该功能就是代表类1;但是在另一个区间,它代表类2。
线性和非线性方法局限性很大。也就是说,如果你分析图片,举个例子,寻找狗狗的照片,它很可能会进入到一个特定的子集里面,比如只显示有一只狗的照片,或是显示某一像素和其他类型的图片。在线性模式里面,你无法确定复杂的关系集。相比于线性模型,非线性模型可能会显得更强大一些,但是这种模式同样难以训练。我们会再一次进入到所谓最优化理论的问题之中,这也是我们在很长一段时间里认为神经网络还不是足够好的原因之一,因为他们会“过拟合”,通俗的说,就是太过强大。我们无法做预测,也无法确保最优化方案。或许,这可能就是为什么神经网络从当下暂时消失的原因吧。
在神经网络理论中,机器学习有很多分支和方法,你能总结一些关键方法吗?
到目前为止,最成功的方法是监督学习方法,它使用了一个比较老的算法,称为反向传播,构建了一个拥有许多不同输出的神经网络。
让我们看下一个神经网络构建,这个网络已经非常流行了,叫做卷积神经网络。这个理念是机器学习研究人员构建了一个多层架构的模型,每一层都可以用不同的方法处理之前一层的连接。
在第一层,你有一个窗口,上面会给图像分配权值,它也变成了该层的输入。由于权值“卷积”,该层也被称为卷积层,它会自我重叠。接着后面会有若干个不同类型的层,每层都有不同的属性,绝大多数都是非线性的。
最后一层会有1万个潜在神经元输入,那些激活的神经输出,每一个都对应了一个特殊的标签,可以用来识别图像。第一类可能是一只猫,第二类可能是一辆车,以此推到所有一万个类,这样一张“图像网”就出来了。如果第一个神经元(一只猫)与1万个神经元中绝大多数都匹配,那么这张图像就能被识别出来,是一张猫的图像。
这种监督学习方法的缺点是,在训练的时候,你必须要在图像上应用标签,这是一辆车,这是一个动物园等。
没错,那么无监督学习方法呢?
无监督学习方法还不是那么受欢迎,它涉及到“自编码器”。这种神经网络不会用来分类图像,但是可以压缩图像。同我刚才提及的方法来读取图像,识别一个权值,并在一个卷积层内用像素填满。其他若干层也这样,包括相比于其它层小的多的中间层。这样做的话,相关的神经元会变得很少,基本上,你读取图像时会进入到一个瓶颈,之后从另一边走出来,并尝试重新构建该图像。
在无监督学习训练下,不需要打标签,因为你所做的就是把图像放入到神经网络的两端,然后训练网络适应图像,特别是训练中间层。一旦你这么做了,那么就拥有了一个知道如何压缩图像的神经网络。无监督学习方法可以给你提供能应用在其他分类器的功能,因此如果你有哪怕一点点标签训练数据,没问题,它一样可以为你提供大量图像。你可以把这些图像看做是无标签训练数据,并使用这些图像构建一个“自编辑器”,然后从这个自编辑器中导出一些功能,这些功能适合使用一些训练数据,以此找到对特殊模型敏感的自动编码神经网络中的神经元。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18