京公网安备 11010802034615号
经营许可证编号:京B2-20210330
简介Python设计模式中的代理模式与模板方法模式编程
这篇文章主要介绍了Python设计模式中的代理模式与模板方法模式编程,文中举了两个简单的代码片段来说明,需要的朋友可以参考下
代理模式
Proxy模式是一种常用的设计模式,它主要用来通过一个对象(比如B)给一个对象(比如A) 提供'代理'的方式方式访问。比如一个对象不方便直接引用,代理就在这个对象和访问者之间做了中介
python的例子
你先设想:一个对象提供rgb三种颜色值,我想获得一个对象的rgb三种颜色,但是我不想让你获得蓝色属性,怎么办?
class Proxy(object):
def __init__(self, subject):
self.__subject = subject
# 代理其实本质上就是属性的委托
def __getattr__(self, name):
return getattr(self.__subject, name)
class RGB:
def __init__(self, red, green, blue):
self.__red = red
self.__green = green
self.__blue = blue
def Red(self):
return self.__red
def Green(self):
return self.__green
def Blue(self):
return self.__blue
class NoBlueProxy(Proxy):
# 我在这个子代理类拦截了blue的访问,这样就不会返回被代理的类的Blue属性
def Blue(self):
return 0
if __name__ == '__main__':
rgb = RGB(100, 192, 240)
print rgb.Red()
proxy = Proxy(rgb)
print proxy.Green()
noblue = NoBlueProxy(rgb)
print noblue.Green()
print noblue.Blue()
模板方法模式
不知道你有没有注意过,我们实现某个业务功能,在不同的对象会有不同的细节实现, 如果说策略模式, 策略模式是将逻辑封装在一个类(提到的文章中的Duck)中,然后使用委托的方式解决。 模板方法模式的角度是:把不变的框架抽象出来,定义好要传入的细节的接口. 各产品类的公共的行为 会被提出到公共父类,可变的都在这些产品子类中
python的例子
# 整个例子我们要根据不同需求处理的内容
ingredients = "spam eggs apple"
line = '-' * 10
# 这是被模板方法调用的基础函数
def iter_elements(getter, action):
"""循环处理的骨架"""
# getter是要迭代的数据,action是要执行的函数
for element in getter():
action(element)
print(line)
def rev_elements(getter, action):
"""反向的"""
for element in getter()[::-1]:
action(element)
print(line)
# 数据经过函数处理就是我们最后传给模板的内容
def get_list():
return ingredients.split()
# 同上
def get_lists():
return [list(x) for x in ingredients.split()]
# 对数据的操作
def print_item(item):
print(item)
#反向处理数据
def reverse_item(item):
print(item[::-1])
# 模板函数
def make_template(skeleton, getter, action):
# 它抽象的传入了 骨架,数据,和子类的操作函数
def template():
skeleton(getter, action)
return template
# 列表解析,数据就是前面的2种骨架(定义怎么样迭代),2个分割数据的函数,正反向打印数据的组合
templates = [make_template(s, g, a)
for g in (get_list, get_lists)
for a in (print_item, reverse_item)
for s in (iter_elements, rev_elements)]
# 执行
for template in templates:
template()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22