 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		量化模型的八种基础
量化选股就是利用数量化的方法选择股票组合,期望该股票组合能够获得超越基准收益率的投资行为。量化选股策略总的来说可以分为两类:第一类是基本面选股,第二类是市场行为选股。
		 
	
基本面选股主要有多因子模型、风格轮动模型和行业轮动模型。市场行为选股主要有资金流模型、动量反转模型、一致预期模型、趋势追踪模型和筹码选股模型。
有关量化选股业绩评价要从两个方面来考虑,一个是收益率,一个是风险指数,只是收益率高的策略并不能成为最好的策略,应该综合考虑收益率和风险情况才能判断一个选股的策略的好坏。量化选股需要考虑的是在承担多大的风险情况下的收益率情况。
简单的说一下八种基本的量化模型,这个也是在网上经常被提到的模型。
多因子模型是应用最广泛的一种选股模型,基本原理是采用一系列的因子作为选股标准,满足这些因子的股票则被买入,不满足的则卖出。多因子模型相对来说比较稳定,因为在不同市场条件下,总有一些因子会发挥作用。
风格轮动模型是利用市场的风格特征进行投资,比如有时候市场偏好小盘股,有时候偏好大盘股,如果是风格转换的初期介入,则可以获得较大的超额收益。
行业轮动模型与风格轮动类似,由于经济周期的原因,总有一些行业先启动,有的行业跟随。在经济周期过程中,依次对这些轮动的行业进行配置,则比买入持有策略有更好的效果。
资金流选股模型的基本思想是利用资金的流向来判断股票的涨跌,如果资金流入,股票应该会上涨,如果资金流出,则股票应该下跌。所以将资金流入流出的情况编成指标,则可以利用该指标来判断在未来一段时间股票的涨跌情况了。
动量反转模型是指股票的的强弱变化情况,过去一段时间强的股票,在未来一段时间继续保持强势,过去一段时间弱的股票,在未来一段时间继续弱势,这叫做动量效应。过去一段时间强的股票在未来一段时间会走弱,过去一段时间弱势的股票在未来一段时间会走强,这叫做反转效应。如果判定动量效应会持续,则应该买入强势股,如果判断会出现反转效应,则应该买入弱势股。
一致预期模型是指市场上的投资者可能会对某些信息产生一致的看法,比如大多量加牛人看好某一只股票,可能这只股票在未来一段时间会上涨;如果大多数量加牛人看空某一只股票,可能这只股票在未来一段时间会下跌。一致预期策略就是利用大多数牛人(股票分析师)的看法来进行股票的买入卖出操作。
趋势追踪模型是属于图形交易的一种,就是当股价出现上涨趋势的时候,则追涨买入;如果出现下跌趋势的时候,则杀跌卖出,本质上是一种追涨杀跌策略。判断趋势的指标有很多种,包括MA,EMA,MACD等,其中最简单也是最有效的是均线策略。
筹码选股模型是另外一种市场行为策略,基本思想是,如果主力资金要拉升一只股票,会慢慢收集筹码,如果主力资金要卖出一只股票,则会慢慢分派筹码,所以根据筹码的分布和变动情况,就可以预测股票的未来是上涨还是下跌。
	
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23