京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅析区块链技术如何改变AI技术
区块链被吹捧为一种新兴技术,它有可能对每个行业造成影响。区块链的分布式系统与当今使用的固有集中式操作系统相对立。采用分布式数据库架构形式,某些操作的记录和身份验证取决于多方的协议,而不仅仅是单一的权限。
与其他集中式技术相比,区块链使操作更安全,更快速,更透明。
区块链已经给金融领域带来了很大的影响,像比特币,以太坊和莱特币这样的加密货币已经成为当前的关注点。现在该技术也已扩展到其他领域,如广告,医疗保健,商业物流,安全等。
帮助AI解释自己:AI当前面临的一大问题是黑盒的不可解释性和难以理解性。因此,清晰的审计跟踪可以提高数据的可信性,还可以提高模型的可信度,也为追溯机器决策过程提供了一条清晰的途径。区块链的不可篡改、无法伪造时间戳等特性无疑是建立审计跟踪的最佳解决方案。
提高人工智能的有效性:安全的数据共享意味着需要更多的数据、更好的模型、更好的操作、更好的结果,以及更好的新数据。区块链分布式的数据库本质,获取更多更真实的数据将不是难题。
降低进入市场的壁垒:首先,区块链技术可以保护任何人的数据,使得我们做到自己的数据自己做主,而不会出现数据寡头这样的局面。其次,区块链上的数据都是经过验证的可信数据。此外,它将允许出现“数据市场”、“模型市场”这样的新市场,最后甚至出现一个AI市场。因此,把数据共享、新的市场、以及区块链数据验证技术整合在一起,将降低小企业进入市场的门槛,缩小与高科技巨头间的竞争优势。在降低市场准入门槛方面,区块链实际上解决了两个问题,即提供更广泛的数据访问和更有效的数据货币化机制。
增加人为信任:一旦人类社会的部分工作由自主虚拟代理机器管理时,清晰的审计跟踪将帮助机器人之间互相信任,并且使我们相信他们。区块链还能增加机器对机器的交互,并为交易提供了一个安全的方式来共享数据和协调决策。
降低重大风险几率:在拥有特定智能合约的DAO中编写AI程序,只有其自身才能执行,这将大大减少AI灾难性事故的发生。
其实区块链和人工智能是技术领域的两个极端方面:一个是在闭合的数据平台中创建的集中化智能,另一个则是在开放的数据环境中推动分布式应用。但是,如果能找到一个聪明的方法来使它们融合在一起,那么积极的外部效应就能无限放大。
现阶段的人工智能算法,使用了很多大规模的并行计算,每个节点的计算任务不同,甚至每个节点上处理的数据都不一致,这些与区块链的基本原则有差异。因此,我一直认为,想通过区块链技术来提升人工智能的性能,现阶段大体是不可行的。
那么,区块链和人工智能的结合点在哪里呢?这个问题我思考了很久,得到的答案是:数字加密货币可以让人工智能拥有自己的账户,从而深度参与到人类社会的各种社会活动和经济活动当中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27