 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		Python设计模式之观察者模式实例
关于设计模式中的观察者模式,定义如下(维基百科):
	觀察者模式(有時又被稱為發布/訂閱模式)是軟體設計模式的一種。在此種模式中,一個目標物件管理所有相依於它的觀察者物件,並且在它本身的狀態改變時主動發出通知。這通常透過呼叫各觀察者所提供的方法來實現。此種模式通常被用來實作事件處理系統。
简单来说,一个被观察者有很多观察者,被观察者的状态的改变会引起所有观察者的响应操作。
	 
那么我们用Python2.7来实现观察者模式。
Python中的集合set
集合(set),类似于列表(list),但是它没有重复的元素,它的doc内容如下:
Build an unordered collection of unique elements.
下面是在ipython中进行的几个简单的集合操作。
In [2]: myset.add(1)
In [3]: myset.add(2)
In [4]: myset.add('s')
		In [5]: print myset
set([1, 2, 's'])
	
In [6]: myset.add('s')
		In [7]: print myset
set([1, 2, 's'])
	
		In [8]: myset.remove(3)
---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
<ipython-input-8-a93073f8a2af> in <module>()
----> 1 myset.remove(3)
	
KeyError: 3
In [9]: myset.remove(1)
		In [10]: print myset
set([2, 's'])
	
通过内置的set()可以产生一个空的集合对象,也可以在set中传入一些参数,例如一个列表:
最常用的方法就是add和remove了,更多内容可以参考http://docs.python.org/2/library/stdtypes.html#set。
一个简单的观察者模式的实现
		if __name__ == '__main__':
    foo01 = Observer("hi, i am foo01")
    foo02 = Observer("hi, i am foo02")
    observers = set()
    observers.add(foo01)
    observers.add(foo01)
    observers.add(foo02)
    print observers
    for ob in observers:
        ob.update()
	
下面是运行结果:
运行结果中第一行是集合observers的内容,其包含了两个Observer实例,这些实例所处的内存地址在每次运行时可能有不同。而
就可以看成多个观察者产生响应。
当然,这种实现并不好——被观察者也应该是一个实例。
更加完善的观察者模式实现
		class SubjectInterface(object):
    def __init__(self):
        self.observers = set()
    def addObserver(self, ob):
        self.observers.add(ob)
    def delObserver(self, ob):
        self.observers.remove(ob)
    def notifyObservers(self):
        for ob in self.observers:
            ob.update()
	
		class Observer01(ObserverInterface):
    def __init__(self, s):
        self.s = s
    def update(self):
        print self.s
	
		class Observer02(ObserverInterface):
    def __init__(self, num1, num2):
        self.num1 = num1
        self.num2 = num2
    def update(self):
        print self.num1 + self.num2
	
		class Subject01(SubjectInterface):
    def __init__(self):
        SubjectInterface.__init__(self)
	
		if __name__ == '__main__':
    ob01 = Observer01("hi, i am ob01")
    ob02 = Observer02("hello,","i am ob02")
    observers = set()
    sb01 = Subject01()
    sb01.addObserver(ob01)
    sb01.addObserver(ob02)
    sb01.notifyObservers()
	
运行结果如下:
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23