
SPSS中各种参数意思
问题:请问 spss 软件中的 T 值和 sig(2-tailed)是什么意思_ 答案 1:: 你的分析结果有 T 值,有 sig 值,说明你是在进行平均值的 比较。也就是你在 比较两组数据之间的平均值有没有差异。 从具有 t 值来看,你是在进行 T 检验。T 检验是平均值的比较方法。
T 检验分为三种方法: 1. 单一样本 t 检验(One-sample t test),是用来比较一组数据的平 均值和一个数值有无差 异。例如,你选取了 5 个人,测定了他们的身 高,要看这五个人的身高平均值是否高于、 低于还是等于 1.70m,就需 要用这个检验方法。 2. 配对样本 t 检验(paired-samples t test),是用来看一组样本在 处理前后的平均值有无 差异。比如,你选取了 5 个人,分别在饭前和饭 后测量了他们的体重,想检测吃饭对他们 的体重有无影响,就需要用 这个 t 检验。 注意,配对样本 t 检验要求严格配对,也就是说, 每一个人的饭前体重 和饭后体重构成一对。 3. 独立样本 t 检验(independent t test),是用来看两组数据的平 均值有无差异。比如, 你选取了 5 男 5 女,想看男女之间身高有无差 异,这样,男的一组,女的一组,这两个组 之间的身高平均值的大小 比较可用这种方法。
总之,选取哪种 t 检验方法是由你的数据特 点和你的结果要求来决定的 。 t 检验会计算出一个统计量来,这个统计量就是 t 值, spss 根据这个 t 值来计算 sig 值。因 此,你可以认为 t 值是一个中间过程 产生的数据,不必理他,你只需要看 sig 值就可以了。 sig 值是一个最 终值,也是 t 检验的最重要的值。 sig 值的意思就是显著性(significance),它的意思是说,平均值是 在百分之几的几率上相 等的。 一般将这个 sig 值与 0.05 相比较,如果它大于 0.05,说明平均值在大于 5%的几率 上是相等的,而在小于 95%的几率上不相等。我们认为平均值 相等的几率还是比较大的, 说明差异是不显著的,从而认为两组数据 之间平均值是相等的。 如果它小于 0.05,说明平 均值在小于 5%的几率上是相等的,而在大于 95%的几率上不相等。我们认为平均值相等的 几率还是比较小的,说明 差异是显著的,从而认为两组数据之间平均值是不相等的。 总之,只需要注意 sig 值就可以了。
求助 spss 统计出的表中 F、sig、t 、df 和 sig 双侧所代表的中文意思是什么 sig 和 sig 双侧是 不一样的吧 df 是自由度的意思,自由度是一个统计学术语;自由度指当以样本的统计量来估计总体的 参数时, 样本中独立或能自由变化的自变量的个数,称为该统计量的自由度;计算 t 值时 是需要知道自由度的;
一般的 sig 没有特别注明的都是指 双侧检验,如果特别注明有单侧,那就是单 侧的
所谓双侧的意思是有可能在大于,有可能小于的, 而单侧的意思是只有一边或者大于,或者小于的
F 是组方差值,
求 ss 高手,F 值是什么意思 F 值是 F 检验的统计量, 也就是组间和组内的离差平方和与自由度的比值显著性 就是与 F 统计量对应的显著性水平,0,001 说明拒绝原假设 即单因素的不同水平之间有显著差异
方差分析:根据不同需要把某变量方差分解为不同的部分,比较它们之间的大小并用 F 检 验进行显著性检验的方法。 又称“变异数分析”或“F 检验”,是用于两个及两个以上样本均 数差别的显著性检验。 F 值是两个均方的比值[效应项/误差项],不可能出现负值。 F 值越大[与给定显著水平的标准 F 值相比较]说明处理之间效果[差异]越明显,误差项越小 说明试验精度越高。F 越大差异性越显著,但是还是得先看 sig 的值是否显著,如果 sig 没 有达到显著效果,即使 F 再大也没有意义。回归分析中,F 值是用来检验总体回归模型是 否有效的,总是要先看显著性检验是否有效,再看 F 值的大小
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18