
R读写Excel文件中数据的方法
用R语言读写Excel的方法有很多,但每种方法都有让人头疼的地方,如xlsx包的代码复杂,只支持Excel2007;RODBC不易理解,限制太多,程序不稳定,会出各种怪毛病。另存为csv格式的方法倒是比较通用比较稳定,但又存在操作麻烦,无法程序化处理多个文件的问题。提取xml也是个办法,但步骤太多代码太复杂,令人望而生畏。用剪贴板转换也不好,这同样需要人工参与,还不如存为csv。
相比之下,用gdata包来读取,配合WriteXLS写入Excel则可以很好的避开上述麻烦。这两个包都支持Excel2003和Excel2007,运行稳定,代码简单直观,也不需要人工参与。下面用一个例子来说明这两个函数包读写Excel的方法。
目标:
ordersData目录下有多个结构相同的Excel文件,有些是Excel2007格式,有些是Excel2003格式,这些文件存储着历年来的销售订单。请读取这些文件,并统计出每个客户的总销售额,最后将结果写入result.xlsx。下面是2011.xlsx的部分数据:
代码:
library(gdata)
library(WriteXLS)
setwd("E: /ordersData")
fileList<-dir()
orders<-read.xls(fileList[1])
for (file in fileList[2:length(fileList)]){
orders<-rbind(orders,read.xls(file))
}
result<-aggregate(orders[,4], orders[c(2)],sum)
WriteXLS("result","result.xlsx")
result.xlsx中的部分数据如下:
代码解读
1、library(gdata)和library(WriteXLS)这两句代码用来引入第三方函数包,这两个包具有read.xls和WriteXLS函数,可以分别执行读取和写入Excel的动作。
2、fileList<-dir()这句代码列出了目录内的所有文件,之后的for语句则是循环读取文件,并将数据拼合到数据框orders中。如果目录内有其他文件,则应当用通配符来过滤。
3、result<-aggregate(orders[,4], orders[c(2)],sum),这句代码用来执行分组汇总,其中orders[,4]代表汇总列(即Amount),orders[c(2)]代表分组列(即Client)。
4、read.xls和WriteXLS虽然来自于不同的包,但都支持data.frame数据类型,因此可以很好的配合起来。另外,read.xls函数可以自动识别Excel2003和Excel2007格式,使用起来非常方便。
5整段代码都很简洁,初学者可以轻松掌握。
注意事项:
1.版本
gdata和WriteXLS不是R语言自带的库函数,而是第三方包,因此需要额外下载安装。另外,这两个函数包都会用到Perl环境,因此挑选合适版本的Perl尤为重要。经过尝试,当R语言的版本是2.15.0时,gdata最匹配的版本是2.13.3,WriteXLS的版本号则是3.5.0,但用最新的Perl环境与之配合时会出问题,需要使用旧一点的5.14.2版本才行,否则会报以下错误:
Error in xls2sep(xls, sheet, verbose = verbose, ..., method = method, :
Intermediate file 'C:\Users\Thim\AppData\Local\Temp\RtmpMHvLZS\file224060624738.csv' missing!
2.性能
读写小文件没问题,但读写稍大些的文件时会发现gdata和WriteXLS的性能极差(这也许是Perl的原因),比如读一个8列20万行的Excel就需要8到10分钟。如果特别关注性能,可以使用xlsx函数包。当然,这样一来就无法支持Excel2003了。事实上,xlsx的性能并不比gdata强太多,真正要解决性能问题,还是应当将所有的Excel文件都转为2007格式,并解压出里面的xml文件,通过解析xml文件来读取数据。
替代方案
对于R语言中存在的版本冲突和性能问题,我们也可以使用Python、集算器、Perl等语言来解决。和R语言一样,它们都可以读写Excel文件并进行数据计算。下面简单介绍集算器和Python的解决方案。
集算器已将访问EXCEL的功能打入安装包,无需单独下载第三方包,支持读写Excel2003和Excel2007,对更老的版本以及Excel2010也支持。代码如下:
这个方案要比R语言难用多了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27