
Python将多个excel表格合并为一个表格
生活中经常会碰到多个excel表格汇总成一个表格的情况,比如你发放了一份表格让班级所有同学填写,而你负责将大家的结果合并成一个。诸如此类的问题有很多。除了人工将所有表格的内容一个一个复制到汇总表格里,那么如何用Python自动实现这些工作呢~
我不知道有没有其他更方便的合并方法,先用Python实现这个功能,自己用就很方便了。
比如,在文件夹下有如下7个表格(想象一下有100个或更多的表格需要合并)
作为样例,每个表格的内容均为
运行程序,将7个表格合并成了test.xls
打开test.xls,发现成功合并了多个表格的数据到一个表格里
代码运行之前,需要安装Numpy,xlrd,xlwt三个扩展包。话不多说,代码如下
#下面这些变量需要您根据自己的具体情况选择
biaotou=['学号','学生姓名','第一志愿','第二志愿','第三志愿','第四志愿','第五志愿','联系电话','性别','备注']
#在哪里搜索多个表格
filelocation="C:\\Users\\ann\Documents\\Python Scripts\\"
#当前文件夹下搜索的文件名后缀
fileform="xls"
#将合并后的表格存放到的位置
filedestination="C:\\Users\\ann\Documents\\Python Scripts\\"
#合并后的表格命名为file
file="test"
#首先查找默认文件夹下有多少文档需要整合
import glob
from numpy import *
filearray=[]
for filename in glob.glob(filelocation+"*."+fileform):
filearray.append(filename)
#以上是从pythonscripts文件夹下读取所有excel表格,并将所有的名字存储到列表filearray
print("在默认文件夹下有%d个文档哦"%len(filearray))
ge=len(filearray)
matrix = [None]*ge
#实现读写数据
#下面是将所有文件读数据到三维列表cell[][][]中(不包含表头)
import xlrd
for i in range(ge):
fname=filearray[i]
bk=xlrd.open_workbook(fname)
try:
sh=bk.sheet_by_name("Sheet1")
except:
print ("在文件%s中没有找到sheet1,读取文件数据失败,要不你换换表格的名字?" %fname)
nrows=sh.nrows
matrix[i] = [0]*(nrows-1)
ncols=sh.ncols
for m in range(nrows-1):
matrix[i][m] = ["0"]*ncols
for j in range(1,nrows):
for k in range(0,ncols):
matrix[i][j-1][k]=sh.cell(j,k).value
#下面是写数据到新的表格test.xls中哦
import xlwt
filename=xlwt.Workbook()
sheet=filename.add_sheet("hel")
#下面是把表头写上
for i in range(0,len(biaotou)):
sheet.write(0,i,biaotou[i])
#求和前面的文件一共写了多少行
zh=1
for i in range(ge):
for j in range(len(matrix[i])):
for k in range(len(matrix[i][j])):
sheet.write(zh,k,matrix[i][j][k])
zh=zh+1
print("我已经将%d个文件合并成1个文件,并命名为%s.xls.快打开看看正确不?"%(ge,file))
filename.save(filedestination+file+".xls")
我的运行环境是windows7 ,64位。Python版本是3.5.1,32位。
以上就是本文的全部内容,希望对大家的学习有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18