
Python将多个excel表格合并为一个表格
生活中经常会碰到多个excel表格汇总成一个表格的情况,比如你发放了一份表格让班级所有同学填写,而你负责将大家的结果合并成一个。诸如此类的问题有很多。除了人工将所有表格的内容一个一个复制到汇总表格里,那么如何用Python自动实现这些工作呢~
我不知道有没有其他更方便的合并方法,先用Python实现这个功能,自己用就很方便了。
比如,在文件夹下有如下7个表格(想象一下有100个或更多的表格需要合并)
作为样例,每个表格的内容均为
运行程序,将7个表格合并成了test.xls
打开test.xls,发现成功合并了多个表格的数据到一个表格里
代码运行之前,需要安装Numpy,xlrd,xlwt三个扩展包。话不多说,代码如下
#下面这些变量需要您根据自己的具体情况选择
biaotou=['学号','学生姓名','第一志愿','第二志愿','第三志愿','第四志愿','第五志愿','联系电话','性别','备注']
#在哪里搜索多个表格
filelocation="C:\\Users\\ann\Documents\\Python Scripts\\"
#当前文件夹下搜索的文件名后缀
fileform="xls"
#将合并后的表格存放到的位置
filedestination="C:\\Users\\ann\Documents\\Python Scripts\\"
#合并后的表格命名为file
file="test"
#首先查找默认文件夹下有多少文档需要整合
import glob
from numpy import *
filearray=[]
for filename in glob.glob(filelocation+"*."+fileform):
filearray.append(filename)
#以上是从pythonscripts文件夹下读取所有excel表格,并将所有的名字存储到列表filearray
print("在默认文件夹下有%d个文档哦"%len(filearray))
ge=len(filearray)
matrix = [None]*ge
#实现读写数据
#下面是将所有文件读数据到三维列表cell[][][]中(不包含表头)
import xlrd
for i in range(ge):
fname=filearray[i]
bk=xlrd.open_workbook(fname)
try:
sh=bk.sheet_by_name("Sheet1")
except:
print ("在文件%s中没有找到sheet1,读取文件数据失败,要不你换换表格的名字?" %fname)
nrows=sh.nrows
matrix[i] = [0]*(nrows-1)
ncols=sh.ncols
for m in range(nrows-1):
matrix[i][m] = ["0"]*ncols
for j in range(1,nrows):
for k in range(0,ncols):
matrix[i][j-1][k]=sh.cell(j,k).value
#下面是写数据到新的表格test.xls中哦
import xlwt
filename=xlwt.Workbook()
sheet=filename.add_sheet("hel")
#下面是把表头写上
for i in range(0,len(biaotou)):
sheet.write(0,i,biaotou[i])
#求和前面的文件一共写了多少行
zh=1
for i in range(ge):
for j in range(len(matrix[i])):
for k in range(len(matrix[i][j])):
sheet.write(zh,k,matrix[i][j][k])
zh=zh+1
print("我已经将%d个文件合并成1个文件,并命名为%s.xls.快打开看看正确不?"%(ge,file))
filename.save(filedestination+file+".xls")
我的运行环境是windows7 ,64位。Python版本是3.5.1,32位。
以上就是本文的全部内容,希望对大家的学习有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-06基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-06抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-06解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30