京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习的第一步:先学会这6种常用算法
机器学习领域不乏算法,但众多的算法中什么是最重要的?哪种是最适合您使用的?哪些又是互补的?使用选定资源的最佳顺序是什么?今天笔者就带大家一起来分析一下。
通用的机器学习算法包括:
* 决策树方法
* SVM
* 朴素贝叶斯方法
* KNN
* K均值
* 随机森林方法
下图是使用Python代码和R代码简要说明的常见机器学习算法。
决策树方法
决策树是一种主要用于分类问题的监督学习算法,它不仅适用于分类,同时也适用于连续因变量。在这个算法中,把种群组分为两个或两个以上更多的齐次集合。基于显著的属性和独立变量使群组尽可能地不同。
Python代码:
R代码:
SVM属于分类方法的一种。在这个算法中,可以将每个数据项绘制成一个n维空间中的一个点(其中n是拥有的特征数量),每个特征的值都是一个特定坐标的值。例如,我们只有两个特征:身高和头发长度,首先将这两个变量绘制在一个二维空间中,每个点有两个坐标(称为支持向量)。然后找到一些能将两个不同分类的数据组之间进行分割的数据。
Python代码:
R代码:
朴素贝叶斯方法
这是一种基于贝叶斯定理的分类技术,在预测变量之间建立独立的假设。简而言之,朴素贝叶斯分类器假定类中特定特征的存在与任何其他特征存在之间无关。朴素贝叶斯模型很容易构建,对于大型的数据集来说,朴素贝叶斯模型特别有用。最让人心动的是,虽然朴素贝叶斯算法很简单,但它的表现不亚于高度复杂的分类方法。
贝叶斯定理提供了一种计算P(c),P(x)和P(x | c)的后验概率的方法:P(c | x)。
P(c | x)是给定预测器(属性)的类(目标)的后验概率。
P(c)是类的先验概率。
P(x | c)是预测器给定类的概率的可能性。
P(x)是预测器的先验概率。
Python代码:
R代码:
KNN可以用于分类和回归问题。但在机器学习行业中分类问题更为广泛。K近邻是一种简单的算法,存储所有可用的案例,并通过其K个邻居的投票情况来分类新案例。KNN方法可以很容易地映射到我们的真实生活中,例如想了解一个陌生人,最好的方法可能就是从他的好朋友和生活子中获得信息!
选择KNN之前需要考虑的事项:
* 计算上昂贵。
* 变量需要被标准化,否则较高范围的变量可能会产生偏差。
* 在进行KNN之前,要进行很多预处理阶段工作。
Python代码:
R代码
K均值
K均值是一种解决聚类问题的无监督算法。其过程遵循一个简单易行的方法,通过一定数量的集群(假设K个聚类)对给定的数据集进行分类。集群内的数据点对同组来说是同质且异构的。
K-均值是如何形成一个集群:
* K-均值为每个群集选取K个点,称为质心。
* 每个数据点形成具有最接近的质心的群集,即K个群集。
* 根据现有集群成员查找每个集群的质心。筛选出新的质心。
* 由于出现了有新的质心,请重复步骤2和步骤3,从新质心找到每个数据点的最近距离,并与新的K个聚类关联。重复这个过程。
如何确定K的价值
在K-均值中,我们有集群,每个集群都有各自的质心。集群内质心和数据点之差的平方和构成了该集群的平方和的总和。另外,当所有群集的平方和的总和被加上时,它成为群集解决方案的平方和的总和。随着集群数量的增加,这个值会不断下降,但如果绘制结果的话,您可能会看到,平方距离的总和急剧下降到某个K值,然后会减缓下降速度。在这里,可以找到最佳的集群数。
Python代码:
R代码:
随机森林方法
随机森林是一个决策树集合的术语。在随机森林里,我们有一系列被称为森林的决策树。为了根据属性对一个新的对象进行分类,每棵树都给出了一个分类。
每棵树形成过程如下:
* 如果训练集中的例数为N,则随机抽取N个例样本,并进行替换。这个样本将成为树生长的的训练集。
* 如果有M个输入变量,则指定一个数m << M,从M中随机选择每个m变量,并且使用m上的最佳划分来分割节点。在森林生长期间,m的值保持不变。
* 让每棵树都尽可能地长到最大。
Python代码:
R代码:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16