京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【数据看球】2018 年世界杯夺冠预测,CDA带你用机器学习来分析
随着2018年FIFA世界杯开赛在即,世界各地的球迷都渴望知道:谁将夺取梦寐以求的冠军奖杯?
如果你不仅是一名资深球迷,而且还是技术宅,那么你还可以利用机器学习和人工智能这两个利器。下面让我们一起预测哪个国家会赢得本次世界杯。
足球比赛涉及到很多因素,因此许多因素无法在机器学习模型中进行探讨。这只是我作为技术宅,从数据角度的尝试。
目标
1. 目标是使用机器学习预测谁将赢得2018年世界杯。
2. 预测世界杯中每场比赛的结果。
3. 对下场比赛进行模拟预测,比如四分之一决赛,半决赛和决赛。
这些目标体现了现实世界中的机器学习预测问题,当中涉及的机器学习任务包括:数据整合,特征建模和结果预测。
数据
我使用了Kaggle的两个数据集,包括自1930年起所有参赛队在国际比赛中的结果。
Kaggle数据集链接:
(https://www.kaggle.com/martj42/international-football-results-from-1872-to-2017/data)
局限性:
由于国际足联排名创建于90年代,因此缺乏大部分数据集。在此我们按照历史比赛记录分析。
环境和工具:
jupyter notebook,numpy,pandas,seaborn,matplotlib和scikit-learn。
我们首先要对两个数据集进行探索性分析,通过特征工程选择最相关的特征进行预测。之后进行数据处理,选择机器学习模型,最后将其部署到数据集上。
开始
首先,导入必要的库并将数据集加载到数据框。
导入库
加载数据集
通过调用两个数据集world_cup.head()和results.head(),确保数据集加载到数据框中,如下所示:
探索性分析:
对两个数据集进行分析后,所得数据集包含过去比赛的数据。新产生的数据集对分析和预测之后的比赛很有用。
在数据科学项目中,确定哪些特征与机器学习模型相关是最耗时的部分。
现在,让我们在结果数据集中添加净胜球数和结果列。
查看新的结果数据框。
然后我们将使用数据的子集。其中包括只有尼日利亚参加的比赛。这将有助于我们了解某支球队的特色,并拓展运用到其他参赛球队。
第一届世界杯于1930年举办。创建年份列,选择1930年以后的所有比赛。
现在可以将这些年尼日利亚的比赛结果进行可视化。
每个世界杯参赛球队的获胜率是很有用的指标,我们可以用它来预测每场比赛的结果。其中比赛场地并不重要。
参赛球队
对所有参赛球队创建数据框。
然后进一步过滤数据框,只显示从1930年起到今年世界杯的球队,减少重复的球队。
创建年份列,并删除1930年之前的比赛,以及不影响比赛结果的列,例如日期、主队进球数、客队进球数、锦标赛、城市、国家、净胜球数和比赛年份。
修改“Y”(预测标签)以简化模型处理。
如果主队获胜,获胜队(winner_team)列将显示“2”,如果是平局则显示“1”,如果客队获胜则显示“0”。
通过设置虚拟变量,将主队(home_team)和客队(away _team)从分类变量转换为连续输入。
使用 pandas,get_dummies()函数。从而用one-hot(数字“1”和“0”)代替分类列,确保加载到Scikit-learn模式。
然后,我们将X和Y集分开,并将数据的70%用于训练,30%用于测试。
我们将使用逻辑回归。通过逻辑函数估计概率,我可以测量分类因变量和一个或多个自变量之间的关系。
换句话说,逻辑回归通过影响结果的数据点(统计数据)对结果进行预测(赢或输)。
在实际运用中,每次对一场比赛输入算法,同时提供上述“数据集”和比赛的实际结果。然后,模型将学习输入数据将如何对比赛结果产生积极或消极影响。
让我们看到最终数据框:
看起来很棒。现在加入算法:
我们的模型在训练集上的准确率为57%,测试集的准确率为55%。这并不理想,但让我们继续。
现在我们将创建数据框部署模型。
首先,我们将加载截至到2018年4月的国际足联排名数据集和小组赛阶段的数据集。
国际足联排名:
(https://us.soccerway.com/teams/rankings/fifa/?ICID=TN_03_05_01)
小组赛阶段数据:
(https://fixturedownload.com/results/fifa-world-cup-2018)
国际足联排名较高的球队将被视为“受欢迎”球队。由于世界杯中不分“主队”或“客队”球队,他们都将归属到“home_teams”列。然后,根据每个团队的排名将球队添加到新的预测数据集中。下一步将创建虚拟变量并部署机器学习模型。
预测比赛
你肯定在想什么时候才能到预测部分。前面代码和解释占据了太多的篇幅,现在我们开始预测。
将模型部署到数据集
首先将模型部署到小组赛。
下面是小组赛的结果。
该模型预测了三场平局,并预测西班牙有很高的胜率。我用这个网站预测了小组赛。
(https://ultra.zone/2018-FIFA-World-Cup-Group-Stage)
16强
以下是对16强的预测。
四分之一决赛
四分之一决赛的情况为:
葡萄牙vs法国,巴西vs英格兰,西班牙vs阿根廷,德国vs比利时。
预测结果:
半决赛
葡萄牙vs巴西;德国vs阿根廷
预测结果:
决赛
巴西vs德国
预测结果:巴西获胜。
根据模型预测,巴西很可能赢得本次世界杯。
结语
研究和改进空间:
1.数据集。为了改进数据集,你可以使用国际足联数据来评估球队中每个球员的水平。
2.混淆矩阵能够用于分析模型分析错误的情况。
3.我们可以整合更多模型,从而提高预测准确率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27