
机器学习中分类与聚类的本质区别
机器学习中有两类的大问题,一个是分类,一个是聚类。
在我们的生活中,我们常常没有过多的去区分这两个概念,觉得聚类就是分类,分类也差不多就是聚类,下面,我们就具体来研究下分类与聚类之间在数据挖掘中本质的区别。
分类
分类有如下几种说法,但表达的意思是相同的。
分类(classification):分类任务就是通过学习得到一个目标函数f,把每个属性集x映射到一个预先定义的类标号y中。
分类是根据一些给定的已知类别标号的样本,训练某种学习机器(即得到某种目标函数),使它能够对未知类别的样本进行分类。这属于supervised learning(监督学习)。
分类:通过学习来得到样本属性与类标号之间的关系。
用自己的话来说,就是我们根据已知的一些样本(包括属性与类标号)来得到分类模型(即得到样本属性与类标号之间的函数),然后通过此目标函数来对只包含属性的样本数据进行分类。
分类算法的局限
分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,这时候可以考虑使用聚类算法。
聚类
聚类的相关的一些概念如下
而聚类指事先并不知道任何样本的类别标号,希望通过某种算法来把一组未知类别的样本划分成若干类别,聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起,这在机器学习中被称作 unsupervised learning (无监督学习)
通常,人们根据样本间的某种距离或者相似性来定义聚类,即把相似的(或距离近的)样本聚为同一类,而把不相似的(或距离远的)样本归在其他类。
聚类的目标:组内的对象相互之间时相似的(相关的),而不同组中的对象是不同的(不相关的)。组内的相似性越大,组间差别越大,聚类就越好。
分类与聚类的比较
聚类分析是研究如何在没有训练的条件下把样本划分为若干类。
在分类中,对于目标数据库中存在哪些类是知道的,要做的就是将每一条记录分别属于哪一类标记出来。
聚类需要解决的问题是将已给定的若干无标记的模式聚集起来使之成为有意义的聚类,聚类是在预先不知道目标数据库到底有多少类的情况下,希望将所有的记录组成不同的类或者说聚类,并且使得在这种分类情况下,以某种度量(例如:距离)为标准的相似性,在同一聚类之间最小化,而在不同聚类之间最大化。
与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据样本有类别标记。
要说明内容
因为最近在研究者两种算法,也就刚好用来说一下分类和聚类不同的算法。
SVM与二分K均值算法的区别之一:支持向量机(SVM)是一种分类算法,二分k均值算法属于一种聚类算法。
在《数据挖掘导论(完整版)》这本书第306页中有这样一句话:聚类可以看做一种分类,它用类标号创建对象的标记,然而只能从数据导出这些标号。相比之下,前面所说的分类是监督分类(supervised classification):即使用有类标号已知的对象开发的模型,对新的、无标记的对象赋予类标号。为此,有时称聚类分析为非监督分类(unsupervised classification)。在数据挖掘中,不附加任何条件使用术语分类时,通常是指监督分类。
因此,SVM与二分K均值算法的区别之一:支持向量机(SVM)是一种监督分类算法,二分k均值算法属于一种非监督分类算法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12