京公网安备 11010802034615号
经营许可证编号:京B2-20210330
几种典型的BI的系统架构分析
随着商务智能(BI)理论的不断发展,商务智能的系统架构已经从单一的理论衍生出多种架构,如分布式商务智能架构,联合商务智能架构等。下图是BO公司定义的商务智能的基本架构,它是一种开放式的系统架构,可以分布式集成现有的系统。从这个架构中,我们可以比较清楚的看出目前商务智能架构的模式。包括数据层、业务层和应用层三部分。数据层基本上就是ETL过程。业务层主要是OLAP和Data Mining的过程。在应用层里主要包括数据的展示,结果分析和性能分析等过程。在实际应用中,由于每个公司的规模和组织架构的不同,在实施商务智能选择系统架构的时候要结合公司的特点,选者最合适的架构。下面就介绍几种现实系统中的几种BI架构。
BO公司定义的BI架构
1、简单的BI架构
这是目前比较常用的商务智能架构,所有的数据集中管理,集中分析,最大的优点是容易管理和部署,系统结构简单,容易维护,适用于小型商务智能系统。缺点是对于跨地域部署比较困难,数据实时性差,可扩展性差。
简单的BI架构
[page] 2、联合的BI架构(Federated BI Architecture)
这种架构比较符合实际的需求,能够集成自定义的数据仓库,外包的数据仓库,架构化的数据仓库,非架构化的数据仓库,分析系统等。应用于多数据仓库的集成和管理。特点是适用于加速time-to-market
,需要高层力量的驱动。成功关键因素:共享一致的的重要的Metrics度量和维度;需要提供统一的标准,拥有企业级的ETL工具和集成的元数据;需要贯穿于整个团队的沟通。联合的BI架构包括:集中逆向商务智能架构,分布逆向商务智能架构,集中顺序商务智能架构,分布顺序商务智能架构及混合架构等。
联合的BI架构(Federated BI Architecture)
2.1 集中逆向BI架构 (Centralized Upstream BI Architecture)
·通常用于中小组织
·需要良好的保管者的沟通
·需要高级执行者买进
·受限于逆向成功惯例(成功的变化是与任何单一实体的进行尝试是成反比的)
集中逆向BI架构 (Centralized Upstream BI Architecture)
[page] 2.2 分布式逆向BI架构 (Distributed Upstream BI Architecture)
·中小组织和大型组织都适用
·是大多数从下至上注重实效表现的逼近系统
·更多的考虑多数人意见
·更多的限制于大多数人意见
·实施团队需要良好的沟通
分布式逆向BI架构 (Distributed Upstream BI Architecture)
2.3 集中式的顺序BI架构 (Centralized Downstream BI Architecture)
·适用于长期数据仓库项目
·用于紧密配合多管道的在巨大组织中到处存在的DW/DM系统
·经常目标设定为特殊功能组织或行政中心
·需要高层在所有的拥有者进行决策
·需要为已有系统在实施团队和支持团队建进行良好的沟通
集中的顺序BI架构 (Centralized Downstream BI Architecture)
[page] 2.4 分布式顺序BI架构(Distributed Downstream BI Architecture)
·适用于大型多元化组织
·容易适应各种不同的冲突
·容易转换到不同的环境
·需要为已有系统在实施团队和支持团队间进行良好的沟通
分布式顺序BI架构(Distributed Downstream BI Architecture)
2.5 混合型BI架构 (Hybrid BI Architecture)
·比任何理想化模型更接近现实情况
·更适应自然的联盟
·元数据集成更具有挑战性
混合型BI架构 (Hybrid BI Architecture)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22