
学习机器学习时需要尽早知道的三件事
我已经在学术界和工业界进行了许多年的机器学习建模工作,在看了一系列讨论“大数据”实用性问题的优秀视频 Scalable ML
后,我开始思考总结一些在学习机器学习时,我希望能够尽早明白的事情。视频来源于 Mikio Braun,介绍了 Scala 和 Spark
相关的知识。
我希望在学习机器学习时能够尽早明白的事情有三项:
下面让我一个一个地介绍它们。
1. 将模型应用到产品中并不是一件简单的小事
我在 />
特征选择和提取方法和技巧常常无法从课本中学习。这些技巧只能从像 Kaggle 竞赛或现实世界中的项目中学习,甚至有时候需要实际应用这些技巧和方法才能学会它们。而这些工作在整个数据科学项目流程中占据了相当一部分比重。
3. 模型评估阶段非常重要
除非你已经将模型应用到测试集数据上了,否则你都不能说已经进入到预测分析阶段。像交叉验证、评估指标等评估技巧都是非常宝贵的,因为它们只需将你的数据分离成测试集和训练集。但是实际生活通常并不会将已经定义好测试集、训练集的数据给你,所以将真实世界中的数据划分为测试数据和训练数据,是一项充满创造性的工作,其中可能包含许多情感因素。在
Dato 上有许多讨论模型评估的优秀文章。
我认为 Mikio Braun 对训练集和测试集的解释值得一读。我也很喜欢他画的图并将其包含在文中,方便不熟悉训练集和测试集概念的读者理解。
我们在论文、会议甚至在讨论我们解决问题时所用的方法的时候,经常忽略了模型评价。“我们在其中使用了 SVM
”这句话并没有告诉我任何信息,这没有告诉我你的数据来源,你选择的特征,你的模型评估方法,你如何将其应用到产品中,以及你在其中如何使用交叉验证或模型查错。我认为我们需要更多关于机器学习中这些“肮脏”的方面问题的讨论。
我的朋友 Ian 在 Data Science Delivered 上有一个很好的笔记,适合需要为真实情况建立机器学习模型的任何层次的人员阅读。同时也适合希望雇佣数据科学家的招聘人员或者与数据科学团队打交道的经理阅读——如果你正在找人询问“你是如何处理这些肮脏的数据的”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05