京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据仓库在异构数据库集成中的应用
1、引言
由于企业信息系统是逐步建立起来的,因此基于不同时期的计算机技术而建立起来的各领域信息系统采用了不同的数据库系统,且自成一体。并以不同的数据模式描述数据,使用不同的语言描述数据存储和操纵事务,它们无法通过计算机网络实现系统间的信息交换和结合,因此企业信息系统中形成了多个异构的、分散的数据库系统,并出现了大量的信息孤岛。在现有的异构数据库系统的基础上,为了有效地实现各个数据库系统之间的信息共享、传递和反馈,解决企业信息系统中的信息孤岛现象,我们有必要对数据库系统中的数据进行再加工,集成异构数据库系统,形成综合的、面向分析的操作平台,从而更好地支持企业的决策分析。数据仓库技术就是解决异构数据库信息集成的有效方案,因为数据仓库可以从异构的数据库系统中使用统一的全局模式来描述数据,并将这些数据集成在数据仓库中,用户可以通过数据仓库提供的统一的数据接口进行统计分析,最终支持决策者的决策过程。
2、数据仓库技术
数据仓库是面向主题的、集成的、随时间变化的、非易失性的数据集合,它用于支持管理层的决策过程。数据仓库的创建和使用都是围绕着主题的,数据仓库中的数据不是将业务处理系统中的数据简单集合,而是对各种源数据进行抽取、筛选、清理、综合而得到的数据集合目。数据仓库中所存储的数据不经常进行更新处理,它主要用于查询和分析。与传统的数据库相比,数据仓库的主要特点表现在:集成了面向主题的综合数据、带有数据集成性质、数据不常更新、数据是随时间不断加载的。
3、异构数据库集成的实现方案
数据仓库技术作为异构数据库集成的解决方案,不仅可以通过数据抽取和转移工具将位于不同地域、不同操作系统平台、不同数据结构的数据按照一定的数据模式集成在一起,同时能够保证数据的一致性。下面将给出异构数据库集成的解决方案。
3.1异构数据库的集成方法
该方法的基本思想是:在原有的不同领域信息系统的基础上,按照决策者的决策需求确定查询主题,定义基于数据仓库的新的数据全局模式,从异构数据库中通过数据抽取和转换工具将数据抽取出来,以一定的格式装载到数据仓库中。同时按照决策者和用户的查询需求编写应用程序,最后以查询报告或表格形式反馈给决策者或用户。
3.2定义新的数据模型
由于数据仓库注重的是数据查询,设计的目的是使用户能够尽可能地直接访问到数据,因此数据是按照决策分析的主题来组织的,每个主题对应一个宏观的分析领域。因此数据的概念模型是多维数据模型,这样可以用多维分析的方法从多角度、多层次对数据进行统计分析。
为实现异构数据库的数据集成, 须首先通过数据的抽取和转换工具将位于不同操作系统平台、不同数据组织形式的数据按照 定的数据模型集成到数据仓库中,其目的就是保证数据仓库中数据的一致性。
[page] (1)抽取
为了将来自不同数据库系统的数据集成到数据仓库中,必须首先从外部数据库将有关数据抽取出来。数据的抽取是数据仓库成功的关键。为了将数据抽取出来,我们必须按照已确定的新的数据模型来抽取数据,因为在新的数据模型中描述了哪些数据需要抽取。
在此基础上我们需要编写数据的抽取程序。该抽取程序的基本功能就是利用OBDC技术访问异构数据库并将不同数据结构的数据抽取出来。具体的实现方法是:
① 利用ODBC数据源管理器根据不同的数据库系统创建相应的数据源;
② 在相应的抽取程序中根据该数据源读取源数据库中的数据。
(2)转换
从源数据库中抽取出来的数据必须依据事先定义好的标准数据格式进行数据的转换。由于企业信息系统中同一个数据可能存放在不同子系统的数据库中,这些数据库之间是分散和异构的,因此就会出现数据名称、数据单位、数据类型甚至数据值不一致的情况,如果这些数据被抽取到数据仓库中,必然会造成数据的不真实性,为此有必要对这些抽取的数据进行彻底地转换。
数据转换的基本思想是:首先建立数据转换规则集和元数据库。抽取出来的数据必须按照数据转换规则集和元数据库中定义的标准对数据进行转换或修补以适应新标准,然后才能将数据装载到数据仓库中。数据转换规则集的表结构见表1。
元数据库存放的是关于数据的数据,即对抽取出来的数据的描述与说明,是数据转换的一个重要依据,数据被抽取出来后,如果在元数据库中存在该数据,则要按照元数据中定义的标准数据格式处理数据。否则就要筹建新的数据标准并存储到元数据库中。
4、结束语
采用数据仓库技术解决异构数据库的集成问题应该是一个好的解决方案。因为ODBC技术为访问异构数据库提供了统一的方式。同时也为各异构数据库之间的协作和多个异构数据库之间的操作提供了系统平台;而数据仓库的建立,不仅实现了企业信息系统中信息的集成,同时为充分利用这些综合数据、历史数据,为企业决策系统提供信息源打下了良好的基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22