京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python数据结构之链表详解
数据结构是计算机科学必须掌握的一门学问,之前很多的教材都是用C语言实现链表,因为c有指针,可以很方便的控制内存,很方便就实现链表,其他的语言,则没那么方便,有很多都是用模拟链表,不过这次,我不是用模拟链表来实现,因为python是动态语言,可以直接把对象赋值给新的变量。
好了,在说我用python实现前,先简单说说链表吧。在我们存储一大波数据时,我们很多时候是使用数组,但是当我们执行插入操作的时候就是非常麻烦,看下面的例子,有一堆数据1,2,3,5,6,7我们要在3和5之间插入4,如果用数组,我们会怎么做?当然是将5之后的数据往后退一位,然后再插入4,这样非常麻烦,但是如果用链表,我就直接在3和5之间插入4就行,听着就很方便。
那么链表的结构是怎么样的呢?顾名思义,链表当然像锁链一样,由一节节节点连在一起,组成一条数据链。
链表的节点的结构如下:
data为自定义的数据,next为下一个节点的地址。
链表的结构为,head保存首位节点的地址:
接下来我们来用python实现链表
python实现链表
首先,定义节点类Node:
class Node:
'''
data: 节点保存的数据
_next: 保存下一个节点对象
'''
def __init__(self, data, pnext=None):
self.data = data
self._next = pnext
def __repr__(self):
'''
用来定义Node的字符输出,
print为输出data
'''
return str(self.data)
然后,定义链表类:
链表要包括:
属性:
链表头:head
链表长度:length
方法:
判断是否为空: isEmpty()
def isEmpty(self):
return (self.length == 0
增加一个节点(在链表尾添加): append()
def append(self, dataOrNode):
item = None
if isinstance(dataOrNode, Node):
item = dataOrNode
else:
item = Node(dataOrNode)
if not self.head:
self.head = item
self.length += 1
else:
node = self.head
while node._next:
node = node._next
node._next = item
self.length += 1
删除一个节点: delete()
#删除一个节点之后记得要把链表长度减一
def delete(self, index):
if self.isEmpty():
print "this chain table is empty."
return
if index < 0 or index >= self.length:
print 'error: out of index'
return
#要注意删除第一个节点的情况
#如果有空的头节点就不用这样
#但是我不喜欢弄头节点
if index == 0:
self.head = self.head._next
self.length -= 1
return
#prev为保存前导节点
#node为保存当前节点
#当j与index相等时就
#相当于找到要删除的节点
j = 0
node = self.head
prev = self.head
while node._next and j < index:
prev = node
node = node._next
j += 1
if j == index:
prev._next = node._next
self.length -= 1
修改一个节点: update()
def update(self, index, data):
if self.isEmpty() or index < 0 or index >= self.length:
print 'error: out of index'
return
j = 0
node = self.head
while node._next and j < index:
node = node._next
j += 1
if j == index:
node.data = data
查找一个节点: getItem()
def getItem(self, index):
if self.isEmpty() or index < 0 or index >= self.length:
print "error: out of index"
return
j = 0
node = self.head
while node._next and j < index:
node = node._next
j += 1
return node.data
查找一个节点的索引: getIndex()
def getIndex(self, data):
j = 0
if self.isEmpty():
print "this chain table is empty"
return
node = self.head
while node:
if node.data == data:
return j
node = node._next
j += 1
if j == self.length:
print "%s not found" % str(data)
return
插入一个节点: insert()
def insert(self, index, dataOrNode):
if self.isEmpty():
print "this chain tabale is empty"
return
if index < 0 or index >= self.length:
print "error: out of index"
return
item = None
if isinstance(dataOrNode, Node):
item = dataOrNode
else:
item = Node(dataOrNode)
if index == 0:
item._next = self.head
self.head = item
self.length += 1
return
j = 0
node = self.head
prev = self.head
while node._next and j < index:
prev = node
node = node._next
j += 1
if j == index:
item._next = node
prev._next = item
self.length += 1
清空链表: clear()
def clear(self):
self.head = None
self.length = 0
以上就是链表类的要实现的方法。
执行的结果:
接下来是完整代码:# -*- coding:utf8 -*-
#/usr/bin/env python
class Node(object):
def __init__(self, data, pnext = None):
self.data = data
self._next = pnext
def __repr__(self):
return str(self.data)
class ChainTable(object):
def __init__(self):
self.head = None
self.length = 0
def isEmpty(self):
return (self.length == 0)
def append(self, dataOrNode):
item = None
if isinstance(dataOrNode, Node):
item = dataOrNode
else:
item = Node(dataOrNode)
if not self.head:
self.head = item
self.length += 1
else:
node = self.head
while node._next:
node = node._next
node._next = item
self.length += 1
def delete(self, index):
if self.isEmpty():
print "this chain table is empty."
return
if index < 0 or index >= self.length:
print 'error: out of index'
return
if index == 0:
self.head = self.head._next
self.length -= 1
return
j = 0
node = self.head
prev = self.head
while node._next and j < index:
prev = node
node = node._next
j += 1
if j == index:
prev._next = node._next
self.length -= 1
def insert(self, index, dataOrNode):
if self.isEmpty():
print "this chain tabale is empty"
return
if index < 0 or index >= self.length:
print "error: out of index"
return
item = None
if isinstance(dataOrNode, Node):
item = dataOrNode
else:
item = Node(dataOrNode)
if index == 0:
item._next = self.head
self.head = item
self.length += 1
return
j = 0
node = self.head
prev = self.head
while node._next and j < index:
prev = node
node = node._next
j += 1
if j == index:
item._next = node
prev._next = item
self.length += 1
def update(self, index, data):
if self.isEmpty() or index < 0 or index >= self.length:
print 'error: out of index'
return
j = 0
node = self.head
while node._next and j < index:
node = node._next
j += 1
if j == index:
node.data = data
def getItem(self, index):
if self.isEmpty() or index < 0 or index >= self.length:
print "error: out of index"
return
j = 0
node = self.head
while node._next and j < index:
node = node._next
j += 1
return node.data
def getIndex(self, data):
j = 0
if self.isEmpty():
print "this chain table is empty"
return
node = self.head
while node:
if node.data == data:
return j
node = node._next
j += 1
if j == self.length:
print "%s not found" % str(data)
return
def clear(self):
self.head = None
self.length = 0
def __repr__(self):
if self.isEmpty():
return "empty chain table"
node = self.head
nlist = ''
while node:
nlist += str(node.data) + ' '
node = node._next
return nlist
def __getitem__(self, ind):
if self.isEmpty() or ind < 0 or ind >= self.length:
print "error: out of index"
return
return self.getItem(ind)
def __setitem__(self, ind, val):
if self.isEmpty() or ind < 0 or ind >= self.length:
print "error: out of index"
return
self.update(ind, val)
def __len__(self):
return self.length
以上就是本文的全部内容,希望对大家的学习有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22