京公网安备 11010802034615号
经营许可证编号:京B2-20210330
怎样评估BI项目成功与否
添加文章“讽刺的是,我们在组织中什么都要评估,但却没有一套好的方法来评估自己的效率。”
这句话是我问Eric Colson如何评估BI分析团队的成功时他对我说的。Eric曾经是Netflix数据科学与工程部门的副总裁,现在是Stitch Fix的首席数据官。
Eric表示,关于BI项目成功他能想到的最好的经验评估法就是业务部门领导在常规运营考核会议上提到自己团队的次数。如果业务部门负责人告诉高管他正在与BI团队实施一个战略性项目,Eric就会认为他的团队有信心在业务方面作出有价值的贡献。他说:“既然他们能把我们当做战略性合作伙伴,也就表示我们做的不错。”
对于大多数BI经理来说,成功的评估通常都是后话。批准一个项目并从中获得成果本就不易,更别说还要启动另一个项目去评估你的团队绩效了。那么,如果条件允许,你会怎样评估呢?
·使用率追踪
许多BI经理都会追踪使用率来评估绩效与价值。他们监控有多少用户持有BI授权、登陆的频率、运行报告的平均数量、针对哪些数据元素的查询数量等等。但是高使用率不一定代表用户获得了大量的价值或者收获的价值与组织的BI投入持平。举个例子,假设有1000名用户,其中25%的登陆频率为一周,但他们登陆上去只用五分钟运行了一个报告,这样用户的活动很多,但真正的摄入很少。
·调研
有的BI经理会更进一步,向BI用户发送调研问卷以了解他们对于BI工具和报表的满意度。不幸的是,据我了解,调研参与的比率低的可怜(当然近两年来所有的调研现状都是如此),也就是说调研结果准确性不高。通常来讲,参与者不是好评就是差评,不够中肯;真正有价值的大众一般不会参与调研。个人认为,调研问卷作为成功的测量尺的价值有待商榷。
·社交媒体分析
我认识一位BI经理,他希望在团队的BI报告中加入社交媒体特性,比如让用户打分、评论和分享,通过社交媒体分析来评估每一份报告的价值,经验和主观数据都不放过,甚至还应包括用户从BI交付中获取的价值。这一做法还能够帮助BI团队过滤未使用和被低估的报告,以更好地了解不同数据对于不同用户的价值。
·传播集市
我过去开玩笑会说,BI项目的成功与环境中传播集市的数量成反比。从理论上讲,公司中存在的数据影子系统脱离的越少,用户从BI团队的报告、仪表盘和自助式报表工具中获取的价值就会越多。当然了,这就意味着BI经理必须在他的组织中发现并监控所有的传播集市。这与“打地鼠”游戏类似,一旦发现了一个传播集市并将其集成到数据仓库中,就会有更多的集市出乎意料地“跳”出来。
·成本效率
优秀的BI经理会追踪决策制定的成本。在他们拟定BI项目之前,会先设立一套价格基准,考量硬件软件的授权费以及分析师每周在数据权限方面花费的时间。BI项目完成后,经理会再次评估这些条目,并将结果与基准比照,估算BI项目的金融提升。
首次实施BI项目的企业为了使数据采集和传输流程变得更加高效,通常会在决策制定过程中徒增不少开支;然而拥有成熟BI项目的公司一般不会发生这种情况,因为他们的BI流程已经得到改进。对此,BI经理必须注重以组织战略性价值为基础的BI项目持续性投资,包括更优决策价值的评估、数据的关键任务流程和更广泛的员工知情权等。这些工作虽然不容易,但仍可以完成,只不过无法预料是否会被一位冷酷的上级否决。
·回到起点
整条思路就像一个大圆,把我们带回了Eric Colson。也许追踪BI团队在会议中被提及的次数不是一个科学的方法,又或者它看起来有一点荒诞与自大,但至少在我看来,这是目前能够真正评估BI项目价值的最优指标
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28