
怎样评估BI项目成功与否
添加文章“讽刺的是,我们在组织中什么都要评估,但却没有一套好的方法来评估自己的效率。”
这句话是我问Eric Colson如何评估BI分析团队的成功时他对我说的。Eric曾经是Netflix数据科学与工程部门的副总裁,现在是Stitch Fix的首席数据官。
Eric表示,关于BI项目成功他能想到的最好的经验评估法就是业务部门领导在常规运营考核会议上提到自己团队的次数。如果业务部门负责人告诉高管他正在与BI团队实施一个战略性项目,Eric就会认为他的团队有信心在业务方面作出有价值的贡献。他说:“既然他们能把我们当做战略性合作伙伴,也就表示我们做的不错。”
对于大多数BI经理来说,成功的评估通常都是后话。批准一个项目并从中获得成果本就不易,更别说还要启动另一个项目去评估你的团队绩效了。那么,如果条件允许,你会怎样评估呢?
·使用率追踪
许多BI经理都会追踪使用率来评估绩效与价值。他们监控有多少用户持有BI授权、登陆的频率、运行报告的平均数量、针对哪些数据元素的查询数量等等。但是高使用率不一定代表用户获得了大量的价值或者收获的价值与组织的BI投入持平。举个例子,假设有1000名用户,其中25%的登陆频率为一周,但他们登陆上去只用五分钟运行了一个报告,这样用户的活动很多,但真正的摄入很少。
·调研
有的BI经理会更进一步,向BI用户发送调研问卷以了解他们对于BI工具和报表的满意度。不幸的是,据我了解,调研参与的比率低的可怜(当然近两年来所有的调研现状都是如此),也就是说调研结果准确性不高。通常来讲,参与者不是好评就是差评,不够中肯;真正有价值的大众一般不会参与调研。个人认为,调研问卷作为成功的测量尺的价值有待商榷。
·社交媒体分析
我认识一位BI经理,他希望在团队的BI报告中加入社交媒体特性,比如让用户打分、评论和分享,通过社交媒体分析来评估每一份报告的价值,经验和主观数据都不放过,甚至还应包括用户从BI交付中获取的价值。这一做法还能够帮助BI团队过滤未使用和被低估的报告,以更好地了解不同数据对于不同用户的价值。
·传播集市
我过去开玩笑会说,BI项目的成功与环境中传播集市的数量成反比。从理论上讲,公司中存在的数据影子系统脱离的越少,用户从BI团队的报告、仪表盘和自助式报表工具中获取的价值就会越多。当然了,这就意味着BI经理必须在他的组织中发现并监控所有的传播集市。这与“打地鼠”游戏类似,一旦发现了一个传播集市并将其集成到数据仓库中,就会有更多的集市出乎意料地“跳”出来。
·成本效率
优秀的BI经理会追踪决策制定的成本。在他们拟定BI项目之前,会先设立一套价格基准,考量硬件软件的授权费以及分析师每周在数据权限方面花费的时间。BI项目完成后,经理会再次评估这些条目,并将结果与基准比照,估算BI项目的金融提升。
首次实施BI项目的企业为了使数据采集和传输流程变得更加高效,通常会在决策制定过程中徒增不少开支;然而拥有成熟BI项目的公司一般不会发生这种情况,因为他们的BI流程已经得到改进。对此,BI经理必须注重以组织战略性价值为基础的BI项目持续性投资,包括更优决策价值的评估、数据的关键任务流程和更广泛的员工知情权等。这些工作虽然不容易,但仍可以完成,只不过无法预料是否会被一位冷酷的上级否决。
·回到起点
整条思路就像一个大圆,把我们带回了Eric Colson。也许追踪BI团队在会议中被提及的次数不是一个科学的方法,又或者它看起来有一点荒诞与自大,但至少在我看来,这是目前能够真正评估BI项目价值的最优指标
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03