
Python实现基于二叉树存储结构的堆排序算法示例
本文实例讲述了Python实现基于二叉树存储结构的堆排序算法。分享给大家供大家参考,具体如下:
既然用Python实现了二叉树,当然要写点东西练练手。
网络上堆排序的教程很多,但是却几乎都是以数组存储的数,直接以下标访问元素,当然这样是完全没有问题的,实现简单,访问速度快,也容易理解。
但是以练手的角度来看,我还是写了一个二叉树存储结构的堆排序
其中最难的问题就是交换二叉树中两个节点。
因为一个节点最多与三个节点相连,那么两个节点互换,就需要考虑到5个节点之间的关系,也需要判断是左右孩子,这将是十分繁琐的,也很容易出错。
class Tree:
def __init__(self, val = '#', left = None, right = None):
self.val = val
self.left = left
self.right = right
self.ponit = None
self.father = None
self.counter = 0
#前序构建二叉树
def FrontBuildTree(self):
temp = input('Please Input: ')
node = Tree(temp)
if(temp != '#'):
node.left = self.FrontBuildTree()
node.right = self.FrontBuildTree()
return node#因为没有引用也没有指针,所以就把新的节点给返回回去
#前序遍历二叉树
def VisitNode(self):
print(self.val)
if(self.left != None):
self.left.VisitNode()
if(self.right != None):
self.right.VisitNode()
#中序遍历二叉树
def MVisitTree(self):
if(self.left != None):
self.left.MVisitTree()
print(self.val)
if(self.right != None):
self.right.MVisitTree()
#获取二叉树的第dec个节点
def GetPoint(self, dec):
road = str(bin(dec))[3:]
p = self
for r in road:
if (r == '0'):
p = p.left
else:
p = p.right
#print('p.val = ', p.val)
return p
#构建第一个堆
def BuildHeadTree(self, List):
for val in List:
#print('val = ', val, 'self.counter = ', self.counter)
self.ponit = self.GetPoint(int((self.counter + 1) / 2))
#print('self.ponit.val = ', self.ponit.val)
if (self.counter == 0):
self.val = val
self.father = self
else:
temp = self.counter + 1
node = Tree(val)
node.father = self.ponit
if(temp % 2 == 0):#新增节点为左孩子
self.ponit.left = node
else:
self.ponit.right = node
while(temp != 0):
if (node.val < node.father.val):#如果新增节点比其父亲节点值要大
p = node.father#先将其三个链子保存起来
LeftTemp = node.left
RightTemp = node.right
if (p.father != p):#判断其不是头结点
if (int(temp / 2) % 2 == 0):#新增节点的父亲为左孩子
p.father.left = node
else:
p.father.right = node
node.father = p.father
else:
node.father = node#是头结点则将其father连向自身
node.counter = self.counter
self = node
if(temp % 2 == 0):#新增节点为左孩子
node.left = p
node.right = p.right
if (p.right != None):
p.right.father = node
else:
node.left = p.left
node.right = p
if (p.left != None):
p.left.father = node
p.left = LeftTemp
p.right = RightTemp
p.father = node
temp = int(temp / 2)
#print('node.val = ', node.val, 'node.father.val = ', node.father.val)
#print('Tree = ')
#self.VisitNode()
else:
break;
self.counter += 1
return self
#将头结点取出后重新调整堆
def Adjust(self):
#print('FrontSelfTree = ')
#self.VisitNode()
#print('MSelfTree = ')
#self.MVisitTree()
print('Get ', self.val)
p = self.GetPoint(self.counter)
#print('p.val = ', p.val)
#print('p.father.val = ', p.father.val)
root = p
if (self.counter % 2 == 0):
p.father.left = None
else:
p.father.right = None
#print('self.left = ', self.left.val)
#print('self.right = ', self.right.val)
p.father = p#将二叉树最后一个叶子节点移到头结点
p.left = self.left
p.right = self.right
while(1):#优化是万恶之源
LeftTemp = p.left
RightTemp = p.right
FatherTemp = p.father
if (p.left != None and p.right !=None):#判断此时正在处理的结点的左后孩子情况
if (p.left.val < p.right.val):
next = p.left
else:
next = p.right
if (p.val < next.val):
break;
elif (p.left == None and p.right != None and p.val > p.right.val):
next = p.right
elif (p.right == None and p.left != None and p.val > p.left.val):
next = p.left
else:
break;
p.left = next.left
p.right = next.right
p.father = next
if (next.left != None):#之后就是一系列的交换节点的链的处理
next.left.father = p
if (next.right != None):
next.right.father = p
if (FatherTemp == p):
next.father = next
root = next
else:
next.father == FatherTemp
if (FatherTemp.left == p):
FatherTemp.left = next
else:
FatherTemp.right = next
if (next == LeftTemp):
next.right = RightTemp
next.left = p
if (RightTemp != None):
RightTemp.father = next
else:
next.left = LeftTemp
next.right = p
if (LeftTemp != None):
LeftTemp.father = next
#print('Tree = ')
#root.VisitNode()
root.counter = self.counter - 1
return root
if __name__ == '__main__':
print("脚本之家测试结果")
root = Tree()
number = [-1, -1, 0, 0, 0, 12, 22, 3, 5, 4, 3, 1, 6, 9]
root = root.BuildHeadTree(number)
while(root.counter != 0):
root = root.Adjust()
运行结果:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29