京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python实现基于二叉树存储结构的堆排序算法示例
本文实例讲述了Python实现基于二叉树存储结构的堆排序算法。分享给大家供大家参考,具体如下:
既然用Python实现了二叉树,当然要写点东西练练手。
网络上堆排序的教程很多,但是却几乎都是以数组存储的数,直接以下标访问元素,当然这样是完全没有问题的,实现简单,访问速度快,也容易理解。
但是以练手的角度来看,我还是写了一个二叉树存储结构的堆排序
其中最难的问题就是交换二叉树中两个节点。
因为一个节点最多与三个节点相连,那么两个节点互换,就需要考虑到5个节点之间的关系,也需要判断是左右孩子,这将是十分繁琐的,也很容易出错。
class Tree:
def __init__(self, val = '#', left = None, right = None):
self.val = val
self.left = left
self.right = right
self.ponit = None
self.father = None
self.counter = 0
#前序构建二叉树
def FrontBuildTree(self):
temp = input('Please Input: ')
node = Tree(temp)
if(temp != '#'):
node.left = self.FrontBuildTree()
node.right = self.FrontBuildTree()
return node#因为没有引用也没有指针,所以就把新的节点给返回回去
#前序遍历二叉树
def VisitNode(self):
print(self.val)
if(self.left != None):
self.left.VisitNode()
if(self.right != None):
self.right.VisitNode()
#中序遍历二叉树
def MVisitTree(self):
if(self.left != None):
self.left.MVisitTree()
print(self.val)
if(self.right != None):
self.right.MVisitTree()
#获取二叉树的第dec个节点
def GetPoint(self, dec):
road = str(bin(dec))[3:]
p = self
for r in road:
if (r == '0'):
p = p.left
else:
p = p.right
#print('p.val = ', p.val)
return p
#构建第一个堆
def BuildHeadTree(self, List):
for val in List:
#print('val = ', val, 'self.counter = ', self.counter)
self.ponit = self.GetPoint(int((self.counter + 1) / 2))
#print('self.ponit.val = ', self.ponit.val)
if (self.counter == 0):
self.val = val
self.father = self
else:
temp = self.counter + 1
node = Tree(val)
node.father = self.ponit
if(temp % 2 == 0):#新增节点为左孩子
self.ponit.left = node
else:
self.ponit.right = node
while(temp != 0):
if (node.val < node.father.val):#如果新增节点比其父亲节点值要大
p = node.father#先将其三个链子保存起来
LeftTemp = node.left
RightTemp = node.right
if (p.father != p):#判断其不是头结点
if (int(temp / 2) % 2 == 0):#新增节点的父亲为左孩子
p.father.left = node
else:
p.father.right = node
node.father = p.father
else:
node.father = node#是头结点则将其father连向自身
node.counter = self.counter
self = node
if(temp % 2 == 0):#新增节点为左孩子
node.left = p
node.right = p.right
if (p.right != None):
p.right.father = node
else:
node.left = p.left
node.right = p
if (p.left != None):
p.left.father = node
p.left = LeftTemp
p.right = RightTemp
p.father = node
temp = int(temp / 2)
#print('node.val = ', node.val, 'node.father.val = ', node.father.val)
#print('Tree = ')
#self.VisitNode()
else:
break;
self.counter += 1
return self
#将头结点取出后重新调整堆
def Adjust(self):
#print('FrontSelfTree = ')
#self.VisitNode()
#print('MSelfTree = ')
#self.MVisitTree()
print('Get ', self.val)
p = self.GetPoint(self.counter)
#print('p.val = ', p.val)
#print('p.father.val = ', p.father.val)
root = p
if (self.counter % 2 == 0):
p.father.left = None
else:
p.father.right = None
#print('self.left = ', self.left.val)
#print('self.right = ', self.right.val)
p.father = p#将二叉树最后一个叶子节点移到头结点
p.left = self.left
p.right = self.right
while(1):#优化是万恶之源
LeftTemp = p.left
RightTemp = p.right
FatherTemp = p.father
if (p.left != None and p.right !=None):#判断此时正在处理的结点的左后孩子情况
if (p.left.val < p.right.val):
next = p.left
else:
next = p.right
if (p.val < next.val):
break;
elif (p.left == None and p.right != None and p.val > p.right.val):
next = p.right
elif (p.right == None and p.left != None and p.val > p.left.val):
next = p.left
else:
break;
p.left = next.left
p.right = next.right
p.father = next
if (next.left != None):#之后就是一系列的交换节点的链的处理
next.left.father = p
if (next.right != None):
next.right.father = p
if (FatherTemp == p):
next.father = next
root = next
else:
next.father == FatherTemp
if (FatherTemp.left == p):
FatherTemp.left = next
else:
FatherTemp.right = next
if (next == LeftTemp):
next.right = RightTemp
next.left = p
if (RightTemp != None):
RightTemp.father = next
else:
next.left = LeftTemp
next.right = p
if (LeftTemp != None):
LeftTemp.father = next
#print('Tree = ')
#root.VisitNode()
root.counter = self.counter - 1
return root
if __name__ == '__main__':
print("脚本之家测试结果")
root = Tree()
number = [-1, -1, 0, 0, 0, 12, 22, 3, 5, 4, 3, 1, 6, 9]
root = root.BuildHeadTree(number)
while(root.counter != 0):
root = root.Adjust()
运行结果:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28