
为何大数据比不上好直觉
大数据是一笔大生意。感应器、GPS跟踪、数学建模和人工智能给企业带来了大规模的实时市场洞察力,为监控、定位、衡量员工和顾客开辟了史无前例的新方法。分析公司高德纳(Gartner)预计,采用大数据技术的公司将“在所有可测的财务指标上超过竞争者20%。”
大数据可能是“新的石油”,但我要提醒大家,不要把它当作一个新的信仰来崇拜。身处数据洪流之中,我们不仅失去了对商业的大局观,还失去了部分人性。如果我们认为更好的生活就等同于更好的算法,还能留下多少创新空间?
我不是有数据恐惧症,我担忧的是纯粹依靠数据。我不反对定量的测量方法,但我质疑它们作为商业表现、社会繁荣和生活意义等重要指标的共识性。
大数据有许多好处,不过我们还需要用“大直觉”来完善它。以下是六大理由:
大数据=老大哥?《纽约时报》(New York
Times)的史蒂夫?洛尔把大数据看作美国管理学家泰勒的“科学管理”的传承。泰勒主义的核心是业绩表现,而如今我们开始衡量快乐感和幸福感、消费偏好、社交关系、体育活动、态度、情绪、情感、行为和身体机能——换句话说,我们在评测自己的生活。
当然,某种程度上说,“量化自身”的应用程序能让人们更好地控制自己的决定。然而,如此一来,我们就在自我改善这一想法的驱使下,把曾经私密的领域开放给了商业世界。
大数据不具有社会性。人类是社会动物。研究显示,人与人之间的关系,尤其是友谊与婚姻,是快乐和自我实现的关键因素。我们的大脑有着关心的本能,我们的心脏和思想有着领会同类并与他们产生共鸣的惊人能力。我们能表现出同情,感受到情绪波动,察觉到非语言的细微暗示,容忍或拥抱,接受与拒绝,爱与痛,体会到我们所有的感受,做出不合理的举动,丧失自制力。这些人性的关键特质受到了里昂?维瑟提尔所称的“主观数字化”的威胁。
最近的社会基因研究显示,数字过载不仅降低了我们的生产力,还削弱了我们进化出的与他人交流的能力。
大数据造成小世界。道德感通过共鸣而增强。矛盾的是,在这个高度连接的时代,我们越来越需要面对一个挑战:与想法、价值观、信仰、信念和文化相异的人们交流。数字技术可以根据我们的偏好,为我们定制线上和线下的社交活动,我们越来越沉浸在自己的世界中——正如艾利?帕雷瑟所说的“过滤泡泡”。它通过智能算法,向我们提供熟悉的内容、文化和同伴,同时把这些东西直接砸入我们的舒适地带。我们不“赞”与我们不同的人和事物,陷入了社会和文化上狭隘的恶性循环。
大数据让我们更智能,而不是更有智慧。我们这个数据驱动的世界不仅变得更小,还变得更快。信息的实时传递促使我们不断地立刻做出回应。道格拉斯?洛西科夫打趣阿尔文?托夫勒1970年的着作《未来冲击》(Future
Shock)的书名,将我们现在的状态称为“现时冲击”(Present
Shock),他哀叹,“一切不是发生在当下的事情日益遭到漠视,而一切被认为是发生在当下的事情又让人应接不暇。”
数据可以迅速为我们提供信息,不过要快速做出意义深远的决定,直觉是更好的工具。普拉萨德?凯帕和纳威?拉裘在最近的一本书中力劝商界领袖进行“从智能到智慧”的转变。他们的意见很中肯。拥有智能的公司和领袖依靠持续的反馈成长起来。智能很快,智慧却很慢。拥有智慧的公司和领袖需要时间来实现转变。
大数据(过于)明显。“你只能管理你所测量到的”——真的吗?金融危机已经证明我们对于所测量的事物管理得很失败。失败的兼并、失败的产品发布、信誉危机、社交媒体的灾难,这一切都证明,我们需要更好地管理那些我们无法测量的事物。
正如设计界的思想家罗杰?马丁所言,领袖需要“兼听则明”。评价21世纪的商界领袖,不再看他/她能排除多少不确定性,而要看他/她能忍受多少不确定性。
大数据不敌直觉力。数据也许能预测新问题,也许能找到已知问题的新解决办法,不过只有人类的直觉和巧妙心思才能提出开创性的新想法。这是独一无二的人类天赋——它远远超过解决一个问题,超过满足某个功能需求的层次。
同样的,如果我们量化所有的人际关系,就无法给人类的判断力留下任何回旋余地。因为我们常常把对人们的感觉和他们的行为混合在一起,我们的判断力比二进制数字更加复杂。它意味着我们可以对双重行为有着更细微的评估和反应,我们可以选择将失败视为创新的先决条件。很难想象,如果我们丧失原谅的能力,如何还能朝着任何目标前进。
让我们抵抗冲向数据的欲望,花时间沉住气,必要时再加快步伐。让我们允许自己不时从数据中解脱出来,去思考什么才是真正重要的东西。让我们用数据来讲述自己故事,但不要让数据成为我们唯一的故事。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18