
特征选择是一个重要的数据预处理过程,获得数据之后要先进行特征选择然后再训练模型。主要作用:1、降维 2、去除不相关特征。
特征选择方法包含:子集搜索和子集评价两个问题。
子集搜索包含前向搜索、后向搜索、双向搜索等。
子集评价方法包含:信息增益,交叉熵,相关性,余弦相似度等评级准则。
两者结合起来就是特征选择方法,例如前向搜索与信息熵结合,显然与决策树很相似。
常见特征选择有三类方法:过滤式(filter),包裹式(wrapper)和嵌入式(embedding).————见周志华老师《机器学习》11章。
1. 过滤式(filter)
过滤式方法先对数据集进行特征选择,再训练学习器。两者分裂开来。Relief是一种著名的过滤式特征选择方法,设计了一种相关统计量来度量特征重要性。
sklearn模块中有一些特征选择的方法。
sklearn官方文档
(1)* Removing features with low variance*
特征筛选的时候,对于特征全0,全1 ,多数1,多数0的要删去。利用sklearn中模块,可如下操作(个人认为属于过滤式的)。
代码如下:
from sklearn.feature_selection import VarianceThreshold
X = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [0, 1, 0], [0, 1, 1]]
sel = VarianceThreshold(threshold=(.8 * (1 - .8))) #选择方差大于某个数的特征。
sel.fit_transform(X)
array([[0, 1],
[1, 0],
[0, 0],
[1, 1],
[1, 0],
[1, 1]])
(2)利用单变量特征选择(统计测试方法)。
Univariate feature selection works by selecting the best features based
on univariate statistical tests. It can be seen as a preprocessing step
to an estimator. Scikit-learn exposes feature selection routines as
objects that implement the transform method:
SelectKBest选择排名排在前n个的变量
SelectPercentile 选择排名排在前n%的变量
其他指标: false positive rate SelectFpr, false discovery rate SelectFdr, or family wise error SelectFwe 和 GenericUnivariateSelect。
对于regression问题:用f_regression函数。
对于classification问题:用chi2或者f_classif函数。
例如:利用 F-test for feature scoring
We use the default selection function: the 10% most significant features**
代码来源
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets, svm
from sklearn.feature_selection import SelectPercentile, f_classif
###############################################################################
# import some data to play with
# The iris dataset
iris = datasets.load_iris() #数据本身(150,4)
# Some noisy data not correlated
E = np.random.uniform(0, 0.1, size=(len(iris.data), 20))
#添加(150,20)的随机噪声
# Add the noisy data to the informative features
X = np.hstack((iris.data, E))
print X.shape #(150,24)维度
y = iris.target
###############################################################################
plt.figure(1)
plt.clf()
X_indices = np.arange(X.shape[-1])
###############################################################################
# Univariate feature selection with F-test for feature scoring
# We use the default selection function: the 10% most significant features
selector = SelectPercentile(f_classif, percentile=10)
selector.fit(X, y)
scores = -np.log10(selector.pvalues_)
scores /= scores.max()
plt.bar(X_indices - .45, scores, width=.2,
label=r'Univariate score ($-Log(p_{value})$)', color='g')
###############################################################################
# Compare to the weights of an SVM
clf = svm.SVC(kernel='linear')
clf.fit(X, y)
svm_weights = (clf.coef_ ** 2).sum(axis=0)
svm_weights /= svm_weights.max()
plt.bar(X_indices - .25, svm_weights, width=.2, label='SVM weight', color='r')
clf_selected = svm.SVC(kernel='linear')
clf_selected.fit(selector.transform(X), y)
svm_weights_selected = (clf_selected.coef_ ** 2).sum(axis=0)
svm_weights_selected /= svm_weights_selected.max()
plt.bar(X_indices[selector.get_support()] - .05, svm_weights_selected,
width=.2, label='SVM weights after selection', color='b')
plt.title("Comparing feature selection")
plt.xlabel('Feature number')
plt.yticks(())
plt.axis('tight')
plt.legend(loc='upper right')
plt.show()
P值越小,显著性越高。负对数也越大。前4个有明显的显著性。(后20个无显著性)
2.包裹式(wrapper)
与过滤式机器学习不考虑后续学习器不同,包裹式特征选择直接把最终要使用的学习器性能作为特征子集的评价标准。由于包裹式特征选择的方法直接针对给定学习器进行优化,包裹式特征一般回避过滤式要好。LVW是一种典型的方法。采用随机策略搜索特征子集,而每次特征子集的评价都需要训练学习器,开销很大。
3.嵌入式(embedding)
嵌入式特征选择将特征选择过程和机器训练过程融合为一体。两者在同一优化过程中完成,即在学习器训练过程中自动进行了特征选择。
例如:L1正则化(Lasso,注意L2岭回归并不会降低维度)
from sklearn.svm import LinearSVC
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectFromModel
iris = load_iris()
X, y = iris.data, iris.target
X.shape
(150, 4)
lsvc = LinearSVC(C=0.01, penalty="l1", dual=False).fit(X, y)
model = SelectFromModel(lsvc, prefit=True)
X_new = model.transform(X)
X_new.shape
(150, 3)
基于树的特征选取
对于树模型选择特征属于上面哪一种,感觉是包裹式,并不确定。
sklearn 提供例子:
class sklearn.ensemble.ExtraTreesClassifier(n_estimators=10, criterion=’gini’, max_depth=None, min_samples_split=2……)
分类标准 默认基尼系数,还可以设成信息熵增益。
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.ensemble import ExtraTreesClassifier
# Build a classification task using 3 informative features
X, y = make_classification(n_samples=1000,
n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
n_classes=2,
random_state=0,
shuffle=False)
# Build a forest and compute the feature importances
forest = ExtraTreesClassifier(n_estimators=250,
random_state=0)
forest.fit(X, y)
importances = forest.feature_importances_
std = np.std([tree.feature_importances_ for tree in forest.estimators_],
axis=0)
indices = np.argsort(importances)[::-1]
# Print the feature ranking
print("Feature ranking:")
for f in range(X.shape[1]):
print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]]))
# Plot the feature importances of the forest
plt.figure()
plt.title("Feature importances")
plt.bar(range(X.shape[1]), importances[indices],
color="r", yerr=std[indices], align="center")
plt.xticks(range(X.shape[1]), indices)
plt.xlim([-1, X.shape[1]])
plt.show()
特征重要性如图所示
上述的所有源于sklearn上的特征选取部分,细节[here]。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27