
几种常见的重要数据结构总结
栈的表示
1. 数组
2. 链表(优点:无需指定大小,不存在栈溢出等情况的处理)
队列表示
1. 数组(构造成循环队列以提高空间使用效率)
2. 链表
二叉树 (满二叉树、完全二叉树、稀疏二叉树等)
1. 数组(二叉树按照层次编号,空缺的孩子结点也要保留编号,这使得当二叉树比较稀疏时,空间利用率很低)
2. 链表(二叉链表(三个域:左孩子,右孩子和结点的值),三叉链表(多一个父结点的指针,解决了找祖先结点困难的问题))
树
1. 广义表
广义表是一个n个表元素组成的有限序列,表元素或者是数据元素(atom),或者是子表(sublist),一个广义表的元素结构可以由3个域构成
第一个域标识该表结点是什么类型的结点(type=0,广义表专用的表头结点;type=1,数据结点;type=2,子表结点),第二个域是值域(如果是数据元素类结点,则是相应数据值,如果是子表则存放指向子表表头的指针),第三个域存放尾指针(type=0,空;type!=0,同一层下一个结点的指针)
2. 双亲表示
一个结点有两个域,data和parent域。可组织成连续存储单元形式(数组),或者链表形式。
3. 左子女右兄弟
一个结点有三个域,data,first child,next sibling。当然也可以组织成数组或者链表形式。
数组其实可以表示任意类型的信息,不同的解析方式产生不同的结果。
霍夫曼树、霍夫曼编码
霍夫曼树:带全路径长度最小的二叉树应是权值大的外结点离根节点最近的扩充二叉树(n个叶结点带权值)
Huffman Code是霍夫曼树在数据编码中的应用,解决数据的最小冗余编码问题,是数据压缩学的基础。
霍夫曼算法:
1. 问题:将权值为{W0,W1,...,Wn}的扩充二叉树构造霍夫曼树
2. 算法过程:
(1). 由给定的n个权值,构造具有n棵扩充二叉树的森林F,其中每棵树Ti只有一个带有权值Wi的根结点,左右子树为空。
(2). 重复以下步骤,直至F中只剩下一棵扩充二叉树,此即为霍夫曼树
①. 在F中选取两棵根结点权值最小的扩充二叉树,作为左右子树构造一棵新的二叉树,新树的根结点的权值为其左右子树根结点权值之和。
②. 在F中删去两棵二叉树
③. 将新二叉树加入F
图
图的存储表示
1. 邻接矩阵
2. 邻接表
图的遍历、连通性
1. 深度优先搜索(对应栈)DFS
2. 宽度优先搜索(对应队列)BFS
最小生成树(Minimum-cost Spanning Tree)
1. Kruskal算法(依次往图中加入最小权值且两个邻接点位于不同连通分量即不构成回路的边)
2. Prim算法(从某一顶点出发,选择与其关联的具有最小权值的边,将另一顶点加入到集合U中,以后每步从一个顶点在U中,另一个不在U中的各条边中选择权值最小的边,将其不在U中的顶点加入U中,直至所有顶点都在U中)
最短路径问题
1. Dijkstra算法 (图中没有负权值边)
2. Bellman-Ford算法(图中没有负权值路径)
活动网络
1. AOV(用顶点表示活动的网络,比如学生课程学习工程图)
拓扑排序问题
2.AOE
关键路径问题
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19