京公网安备 11010802034615号
经营许可证编号:京B2-20210330
几种常见的重要数据结构总结
栈的表示
1. 数组
2. 链表(优点:无需指定大小,不存在栈溢出等情况的处理)
队列表示
1. 数组(构造成循环队列以提高空间使用效率)
2. 链表
二叉树 (满二叉树、完全二叉树、稀疏二叉树等)
1. 数组(二叉树按照层次编号,空缺的孩子结点也要保留编号,这使得当二叉树比较稀疏时,空间利用率很低)
2. 链表(二叉链表(三个域:左孩子,右孩子和结点的值),三叉链表(多一个父结点的指针,解决了找祖先结点困难的问题))
树
1. 广义表
广义表是一个n个表元素组成的有限序列,表元素或者是数据元素(atom),或者是子表(sublist),一个广义表的元素结构可以由3个域构成
第一个域标识该表结点是什么类型的结点(type=0,广义表专用的表头结点;type=1,数据结点;type=2,子表结点),第二个域是值域(如果是数据元素类结点,则是相应数据值,如果是子表则存放指向子表表头的指针),第三个域存放尾指针(type=0,空;type!=0,同一层下一个结点的指针)
2. 双亲表示
一个结点有两个域,data和parent域。可组织成连续存储单元形式(数组),或者链表形式。
3. 左子女右兄弟
一个结点有三个域,data,first child,next sibling。当然也可以组织成数组或者链表形式。
数组其实可以表示任意类型的信息,不同的解析方式产生不同的结果。
霍夫曼树、霍夫曼编码
霍夫曼树:带全路径长度最小的二叉树应是权值大的外结点离根节点最近的扩充二叉树(n个叶结点带权值)
Huffman Code是霍夫曼树在数据编码中的应用,解决数据的最小冗余编码问题,是数据压缩学的基础。
霍夫曼算法:
1. 问题:将权值为{W0,W1,...,Wn}的扩充二叉树构造霍夫曼树
2. 算法过程:
(1). 由给定的n个权值,构造具有n棵扩充二叉树的森林F,其中每棵树Ti只有一个带有权值Wi的根结点,左右子树为空。
(2). 重复以下步骤,直至F中只剩下一棵扩充二叉树,此即为霍夫曼树
①. 在F中选取两棵根结点权值最小的扩充二叉树,作为左右子树构造一棵新的二叉树,新树的根结点的权值为其左右子树根结点权值之和。
②. 在F中删去两棵二叉树
③. 将新二叉树加入F
图
图的存储表示
1. 邻接矩阵
2. 邻接表
图的遍历、连通性
1. 深度优先搜索(对应栈)DFS
2. 宽度优先搜索(对应队列)BFS
最小生成树(Minimum-cost Spanning Tree)
1. Kruskal算法(依次往图中加入最小权值且两个邻接点位于不同连通分量即不构成回路的边)
2. Prim算法(从某一顶点出发,选择与其关联的具有最小权值的边,将另一顶点加入到集合U中,以后每步从一个顶点在U中,另一个不在U中的各条边中选择权值最小的边,将其不在U中的顶点加入U中,直至所有顶点都在U中)
最短路径问题
1. Dijkstra算法 (图中没有负权值边)
2. Bellman-Ford算法(图中没有负权值路径)
活动网络
1. AOV(用顶点表示活动的网络,比如学生课程学习工程图)
拓扑排序问题
2.AOE
关键路径问题
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06