京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业迈向大数据时代的五个步骤
当然,从传统数据库模式走到大数据时代是每个企业都需要经历的一次涅槃,下图给出了常见的五部曲:
1)大数据收集。如果你大数据在手,恭喜你,至少你已经有了稳定的数据源。如果你没有大数据,可能你需要想想哪些环节的重要数据从你指间溜走,你要开始部署新的工具拦住这些流失的数据,为他们找个收容所。当然,大数据收集最重要的是要确保数据质量,没有质量的数据坚决杜绝,因为没有意义的数据只会增加系统的复杂性,无形中增加成本。当然,大数据的价值密度本来就很低,如何辨别有质量的大数据就不是轻松的一个环节,要花大力气来解决。
2)混合云或者数据的全局保障。收集数据要依赖于基础架构,云计算是一个重要平台,通过软件及服务,实现全公司数据的完整覆盖,包括各种类型、多种应用的数据,不漏掉任何有价值的数据,也不让垃圾数据混入其中。
3)实现分析工具实时、平民化和可视化。将复杂的、臃肿的、不能实时分析的工具统统扔进历史的垃圾桶,只有大数据分析工具的革新才能真正实时挖掘出大数据的价值。传统的分析工具会被大数据淹没,成为企业的负担,不能产生应有的价值。
4)虚拟化可实现管理自动化,降低运营成本。一个使用复杂、成本昂贵的大数据平台会成为数据中心的新负担,带来的价值可能会被复杂的平台本身直接消耗殆尽。随着虚拟化,特别是软件定义的数据中心时代的到来,轻型、便捷的新平台成为大数据处理的首选平台,不仅大幅度降低成本,也为大数据处理提供了高度的弹性、管理能力等,让大数据处理成为企业新价值的发动机,成为企业竞争力的助推器,成为CIO的新头脑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27