京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为什么说Python更适合做AI/机器学习
Python网络编程框架Twisted的创始人Glyph Lefkowitz(glyph):
编程是一项社交活动——Python社区已经认识到了这一点!
人工智能是一个全面的技术术语,通常意味着当前计算机科学研究中最先进的领域。
有一段时间,我们理所当然的认为基本图遍历是AI。那时候,Lisp是人工智能的专属语言,仅仅是因为研究人员更容易用它来做快速原型。我认为Python已经在很大程度上取代了它,因为除了类似的高层次功能之外,它还拥有出色的第三方库生态库和框架以及操作系统设施的完美集成。
Lispers可能会反对我的看法,所以我应该说清楚,我没有对Python在应用层次中的位置做出精确的陈述,只是说Python和Lisp都处于相同的语言类别中,像内存安全、模块、名称空间和高级数据结构。
在更具体的机器学习意义上,这是人们最近说的关于AI的最多的领域,我认为还有更具体的答案。
NumPy及其相应的生态系统的存在使得研究人员可以对高级别内容进行研究,并进行高性能的数字处理。如果不是有非常强的数字处理需求,机器学习是没有任何意义的。
Python社区致力于为非程序员提供友好的介绍和生态系统支持,这确实增加了其在数据科学和计算科学的应用。无数的统计工作人员、天文学家、生物学家和商业分析师已经成为Python程序员,并且他们对自己的工具也做了些许的改进。编程基本上成为了一种社交活动,Python社区比JavaScript以外的任何其他语言都承认这一点。
机器学习是一个特别集成度很高的学科,因为任何AI/机器学习系统都需要从现实世界中提取大量数据作为训练数据或系统输入,因此Python的框架库生态系统意味着它通常可以很好地访问和转换数据。
PSF联合创始人兼eGenix首席执行官
Marc-Andre Lemburg(@malemburg)
Python允许用户关注真正的问题
对于没有受过计算机科学培训的科学家来说,Python非常容易理解。当你尝试驱动你需要执行研究的外部库时,它可以帮助你消除许多必须处理的事项。
在Numeric(现在是NumPy)开始开发之后,增加了IPython笔记本(现在是Jupyter笔记本)、matplotlib和许多其他工具以使事情更加直观,Python让科学家主要考虑解决问题的方法,而不是去考虑那么多推动这些解决方案所需的技术。
与其他领域一样,Python是一种理想的集成语言,它将技术轻松绑定在一起。Python允许用户关注真正的问题,而不是花时间在实现细节上。除了为用户提供更方便的功能之外,Python还可以作为开发与外部库进行低级集成的理想平台。这主要是由于Python可以提供一个非常完整的API访问。
研究人员和Python机器学习的作者Sebastian Raschka(@rasbt):
对于数学和面向数据的人来说,Python非常容易使用。
我认为Python更适合做AI有两个主要原因。第一个原因是Python非常容易理解和学习。
我认为大多数从事机器学习和人工智能的人员都希望以最快捷的方式实现自己的想法。人工智能的重点是研究和应用程序,编程只是一个让你到达那里的工具。对于需要更多的数学和以数据为导向的人来说,编程语言学习起来越舒服,进入壁垒越低。
Python也是非常容易理解的,这有助于保持最新的机器学习和AI的现状,例如,阅读算法的代码实现时。尝试人工智能和机器学习的新思路往往需要实现相对复杂的算法,语言越简单,调试就越容易。
第二个主要原因是,虽然Python本身就是一种非常易于访问的语言,但我们在其之上有很多优秀的库,这使得我们的工作变得更容易。没有人愿意花时间从头开始重新实现基本算法(除了研究机器学习和人工智能)。大量已经存在的Python库帮助我们专注于更令人兴奋的事情。
Python也可以用于处理高效的C/C ++算法和CUDA/cuDNN实现的优秀包装语言,这就是为什么现有的机器学习和深度学习库在Python中高效运行的原因。这对于机器学习和AI领域的工作是非常重要的。
总而言之,我会说Python是一种伟大的语言,它可以让研究人员和从业者专注于机器学习和AI,并且比其他语言更少分心。
ThoughtWorks的技术负责人Luciano Ramalho(@ramalhoorg):
Python对科学计算有吸引力。
最重要和最直接的原因是NumPy和SciPy库支持scikit-learn这样的项目,因为它目前几乎是所有机器学习任务的标准工具。
创建NumPy,SciPy,scikit-learn和其他许多库的原因是因为Python有一些功能使其对科学计算非常有吸引力。Python有其简单而一致的语法,可以让软件工程师以外的人更易于使用编程。
另一个原因是运算符重载,它使代码可读和简洁。然后就是Python的缓冲协议(PEP 3118),这是外部库在处理类似数组的数据结构时与Python高效互操作的标准。最后,Python为科学计算提供了丰富的库生态系统,吸引了更多的科学家并创造了良性循环。
Mike Bayer,Red Hat的高级软件工程师和SQLAlchemy的创建者:
Python是严格和高度一致性的。
我们正在Python这个领域中开发我们的库。我们将有一定希望保留和优化的算法放入一个库中,如scikit-learn。然后我们继续迭代并分享关于我们如何组织和思考数据的笔记。
高级脚本语言非常适合人工智能和机器学习,因为我们可以快速移动并重试。我们创建的大部分代码代表的是实际的数学和数据结构,而不是模板。
像Python这样的脚本语言更好,因为它是严格的和高度一致性的。每个人都可以更好地理解彼此的Python代码。
IPython笔记本等工具的可用性使得我们可以在全新的水平上迭代和分享我们的数学和算法。
Python强调了我们正在努力完成的工作的核心,并且完全最小化了我们如何给计算机指令的所有其他内容,这就是它应该如何实现的,自动完成任何你不需要考虑的事情。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27