
Python语言描述随机梯度下降法
1.梯度下降
1)什么是梯度下降?
因为梯度下降是一种思想,没有严格的定义,所以用一个比喻来解释什么是梯度下降。
简单来说,梯度下降就是从山顶找一条最短的路走到山脚最低的地方。但是因为选择方向的原因,我们找到的的最低点可能不是真正的最低点。如图所示,黑线标注的路线所指的方向并不是真正的地方。
既然是选择一个方向下山,那么这个方向怎么选?每次该怎么走?
先说选方向,在算法中是以随机方式给出的,这也是造成有时候走不到真正最低点的原因。
如果选定了方向,以后每走一步,都是选择最陡的方向,直到最低点。
总结起来就一句话:随机选择一个方向,然后每次迈步都选择最陡的方向,直到这个方向上能达到的最低点。
2)梯度下降是用来做什么的?
在机器学习算法中,有时候需要对原始的模型构建损失函数,然后通过优化算法对损失函数进行优化,以便寻找到最优的参数,使得损失函数的值最小。而在求解机器学习参数的优化算法中,使用较多的就是基于梯度下降的优化算法(GradientDescent,GD)。
3)优缺点
优点:效率。在梯度下降法的求解过程中,只需求解损失函数的一阶导数,计算的代价比较小,可以在很多大规模数据集上应用
缺点:求解的是局部最优值,即由于方向选择的问题,得到的结果不一定是全局最优
步长选择,过小使得函数收敛速度慢,过大又容易找不到最优解。
2.梯度下降的变形形式
根据处理的训练数据的不同,主要有以下三种形式:
1)批量梯度下降法BGD(BatchGradientDescent):
针对的是整个数据集,通过对所有的样本的计算来求解梯度的方向。
优点:全局最优解;易于并行实现;
缺点:当样本数据很多时,计算量开销大,计算速度慢
2)小批量梯度下降法MBGD(mini-batchGradientDescent)
把数据分为若干个批,按批来更新参数,这样,一个批中的一组数据共同决定了本次梯度的方向,下降起来就不容易跑偏,减少了随机性
优点:减少了计算的开销量,降低了随机性
3)随机梯度下降法SGD(stochasticgradientdescent)
每个数据都计算算一下损失函数,然后求梯度更新参数。
优点:计算速度快
缺点:收敛性能不好
总结:SGD可以看作是MBGD的一个特例,及batch_size=1的情况。在深度学习及机器学习中,基本上都是使用的MBGD算法。
3.随机梯度下降
随机梯度下降(SGD)是一种简单但非常有效的方法,多用用于支持向量机、逻辑回归等凸损失函数下的线性分类器的学习。并且SGD已成功应用于文本分类和自然语言处理中经常遇到的大规模和稀疏机器学习问题。
SGD既可以用于分类计算,也可以用于回归计算。
1)分类
a)核心函数
sklearn.linear_model.SGDClassifier
b)主要参数(详细参数)
loss:指定损失函数。可选值:‘hinge'(默认),‘log',‘modified_huber',‘squared_hinge',‘perceptron',
"hinge":线性SVM
"log":逻辑回归
"modified_huber":平滑损失,基于异常值容忍和概率估计
"squared_hinge":带有二次惩罚的线性SVM
"perceptron":带有线性损失的感知器
alpha:惩罚系数
c)示例代码及详细解释
d)结果图
2)回归
SGDRegressor非常适合回归问题具有大量训练样本(>10000),对于其他的问题,建议使用的Ridge,Lasso或ElasticNet。
a)核心函数
sklearn.linear_model.SGDRegressor
b)主要参数(详细参数)
loss:指定损失函数。可选值‘squared_loss'(默认),‘huber',‘epsilon_insensitive',‘squared_epsilon_insensitive'
说明:此参数的翻译不是特别准确,请参考官方文档。
"squared_loss":采用普通最小二乘法
"huber":使用改进的普通最小二乘法,修正异常值
"epsilon_insensitive":忽略小于epsilon的错误
"squared_epsilon_insensitive":
alpha:惩罚系数
c)示例代码
因为使用方式与其他线性回归方式类似,所以这里只举个简单的例子:
总结
以上就是本文关于Python语言描述随机梯度下降法的全部内容,希望对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02