
Python语言描述随机梯度下降法
1.梯度下降
1)什么是梯度下降?
因为梯度下降是一种思想,没有严格的定义,所以用一个比喻来解释什么是梯度下降。
简单来说,梯度下降就是从山顶找一条最短的路走到山脚最低的地方。但是因为选择方向的原因,我们找到的的最低点可能不是真正的最低点。如图所示,黑线标注的路线所指的方向并不是真正的地方。
既然是选择一个方向下山,那么这个方向怎么选?每次该怎么走?
先说选方向,在算法中是以随机方式给出的,这也是造成有时候走不到真正最低点的原因。
如果选定了方向,以后每走一步,都是选择最陡的方向,直到最低点。
总结起来就一句话:随机选择一个方向,然后每次迈步都选择最陡的方向,直到这个方向上能达到的最低点。
2)梯度下降是用来做什么的?
在机器学习算法中,有时候需要对原始的模型构建损失函数,然后通过优化算法对损失函数进行优化,以便寻找到最优的参数,使得损失函数的值最小。而在求解机器学习参数的优化算法中,使用较多的就是基于梯度下降的优化算法(GradientDescent,GD)。
3)优缺点
优点:效率。在梯度下降法的求解过程中,只需求解损失函数的一阶导数,计算的代价比较小,可以在很多大规模数据集上应用
缺点:求解的是局部最优值,即由于方向选择的问题,得到的结果不一定是全局最优
步长选择,过小使得函数收敛速度慢,过大又容易找不到最优解。
2.梯度下降的变形形式
根据处理的训练数据的不同,主要有以下三种形式:
1)批量梯度下降法BGD(BatchGradientDescent):
针对的是整个数据集,通过对所有的样本的计算来求解梯度的方向。
优点:全局最优解;易于并行实现;
缺点:当样本数据很多时,计算量开销大,计算速度慢
2)小批量梯度下降法MBGD(mini-batchGradientDescent)
把数据分为若干个批,按批来更新参数,这样,一个批中的一组数据共同决定了本次梯度的方向,下降起来就不容易跑偏,减少了随机性
优点:减少了计算的开销量,降低了随机性
3)随机梯度下降法SGD(stochasticgradientdescent)
每个数据都计算算一下损失函数,然后求梯度更新参数。
优点:计算速度快
缺点:收敛性能不好
总结:SGD可以看作是MBGD的一个特例,及batch_size=1的情况。在深度学习及机器学习中,基本上都是使用的MBGD算法。
3.随机梯度下降
随机梯度下降(SGD)是一种简单但非常有效的方法,多用用于支持向量机、逻辑回归等凸损失函数下的线性分类器的学习。并且SGD已成功应用于文本分类和自然语言处理中经常遇到的大规模和稀疏机器学习问题。
SGD既可以用于分类计算,也可以用于回归计算。
1)分类
a)核心函数
sklearn.linear_model.SGDClassifier
b)主要参数(详细参数)
loss:指定损失函数。可选值:‘hinge'(默认),‘log',‘modified_huber',‘squared_hinge',‘perceptron',
"hinge":线性SVM
"log":逻辑回归
"modified_huber":平滑损失,基于异常值容忍和概率估计
"squared_hinge":带有二次惩罚的线性SVM
"perceptron":带有线性损失的感知器
alpha:惩罚系数
c)示例代码及详细解释
d)结果图
2)回归
SGDRegressor非常适合回归问题具有大量训练样本(>10000),对于其他的问题,建议使用的Ridge,Lasso或ElasticNet。
a)核心函数
sklearn.linear_model.SGDRegressor
b)主要参数(详细参数)
loss:指定损失函数。可选值‘squared_loss'(默认),‘huber',‘epsilon_insensitive',‘squared_epsilon_insensitive'
说明:此参数的翻译不是特别准确,请参考官方文档。
"squared_loss":采用普通最小二乘法
"huber":使用改进的普通最小二乘法,修正异常值
"epsilon_insensitive":忽略小于epsilon的错误
"squared_epsilon_insensitive":
alpha:惩罚系数
c)示例代码
因为使用方式与其他线性回归方式类似,所以这里只举个简单的例子:
总结
以上就是本文关于Python语言描述随机梯度下降法的全部内容,希望对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27