京公网安备 11010802034615号
经营许可证编号:京B2-20210330
诺奖为什么致敬大数据
绿叶如何光合作用?
化学家说:植物在可见光照射下,将二氧化碳和水转化为有机物,并释放出氧气。
为什么吃药能治病?
化学家说:因为有效的药物分子在体内,会主动锁定目标,消灭病毒。
……
化学家如何看得见微观世界的现象?原因是他们采用了一种“在复杂化学系统中发展了多尺度模型”的观测方法。
北京时间10月9日17时45分,2013年度诺贝尔化学奖授予了马丁·卡普拉斯、迈克尔·莱维特和阿里耶·瓦谢勒。他们的获奖原因,正是你所看到的上述科学成果。
通俗点说,它就是通过计算机筛选大量数据,从而模拟肉眼所看不到的变化是如何发生的。在告别“小棍棍”实验,现代科学通过建模计算,无中生有,系统生长。毫无疑问,这是颁给大数据时代的化学奖。
虚拟化学实验
在诺奖官网上,写着三位科学家的获奖原因:“在复杂化学系统中发展了多尺度模型。”
这是化学领域一个质的飞跃。在过去,科学家常用塑料球和小棍棍进行分子建模。“一旦真实体系再为微观,理论化学则束手无策。”中国科技大学化学物理系教授江俊说。
不妨做个联想。化学反应以光速发生着。在百万分之一秒之内,电子从一个原子核跳到另一个。一旦涉及到一个关键反应,试管根本没办法研究这么短的时间里都发生了什么。在这一时期,理论化学也经历了最艰难的困境。
上世纪70年代,计算机“登场”了。马丁·卡普拉斯、迈克尔·莱维特和阿里耶·瓦谢勒想到了模拟,通过经典物理和量子物理两种思路。
不过,它们看起来似乎水火不容。经典物理的优点是计算简单,并且可以被应用于很大的分子,但它无法提供模拟化学反应的方法;量子物理可以通过计算机研究化学反应,但却只能应用于小分子。
接下来,他们三人要做的是优化—将两个物理体系的精华结合在一起,并提取出在经典物理和量子物理领域都适用的研究方法。例如,要模拟对药物在体内如何与靶蛋白进行耦合,计算机会对靶蛋白中能与指定药物相互作用的原子进行量子理论的计算。大蛋白的其余部分则利用相对没那么费力的经典物理方法进行模拟。
“整个分工是这样完成的:最最关键的反应核心,尤其是反应的自由电子,就用量子物理方法;然后,外围的原子反应,通过经典物理分析;最外层的溶液,全部当成是均一的电介质。”江俊说。
“他们三人的建模工作,开创了一个新的方向。”江俊认为,
反映真实情况的计算机模型已经成为了现在化学界大多数新进展的关键。时至今日,计算机对化学家的作用已经和试管一样重要。因为计算机对化学反应的模拟能够非常逼真,化学家们已经能够通过计算机预测传统实验的结果。
进入大数据时代
“用计算机取代真实实验的尝试,这是颁给大数据时代的化学奖。”浙江大学化学系计算化学教授王琦认为。
以观测光合作用的发生为例。在巨大的蛋白质分子可能包含数以十万计的原子,在其中存在一个很小的区域,称作反应中心。正是在这里水分子被分解。而实际上,仅有少部分的原子参与到这个反应过程。
我们可以想象到的是:当阳光照射到绿叶上,这些蛋白质就会充斥能量,其整个原子结构都会发生改变。化学家们则通过计算机模拟了头脑中的这幅景象。
“这是一个非常庞大的数据筛选工程。”王琦说。以模拟一个蛋白质运动轨迹为例,如果我们的观察时间控制在一个微秒以内,那么这中间产生的数据量大概是以G,甚至T为单位。要知道,1G的容量按常见的800万像素照片来说,格式为jpg,就能达到500~600张照片。
看到这里,你或许会问:为一个小小的反应,处理这么多复杂的数据量值得吗?当然值,仅仅是发生在植物绿叶之中的神奇化学反应,就让我们的大气中充满氧气,而这是地球上的生命体赖以生存的基础。往更深处想:如果你能模拟光合机制,那么就将制造出更加高效的太阳能电池板;当水分子分解产生氧气,也就产生了可以被用作能源的氢气。如果你成功了,你就能帮助地球对抗温室效应。
构建“数字生命”
“大数据和计算机的齐头并进发展,将有利于我们更深入地了解万物的整个化学过程。”王琦认为,卡普拉斯、莱维特和瓦谢勒所发明的多尺度模型的意义在于其具有普遍性,可用来研究各种各样的化学过程,从生命分子到工业化学过程等。科学家们机动车的燃料,药品设计甚至疾病筛查等。
其研究进展还不仅如此,迈克尔·莱维特曾在一份刊物中谈到其梦想:在分子层面上模拟鲜活有机体,构建“数字生命”,这是一个颇具吸引力的想法。巧合的是,在去年此时,诺贝尔物理学奖对未来不远处的量子计算机情有独钟;而在这一年,大数据、云计算踩着科技的“风火轮”呼啸而来。试问,莱维特的梦想还会远吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01