
SPSS统计分析案例:Wilcoxon符号秩检验
最近我发现,大家对T检验的使用频率很高,但是有一个共同的应该引起注意的问题,几乎没有人去讨论原始数据的正态分布情况,只要是两样本差异检验,就直接使用T检验出结果。
严格来说,这是不严谨的。为什么呢?因为T检验对数据正态分布有一定的要求和假设,当数据明显不是正态分布的时候,要考虑使用非参数检验过程。
从这个角度,也能说明非参数检验的实用性更强,使用范围更为广泛。
今天就送上一个非参数配对检验:Wilcoxon符号秩检验,与之遥相呼应的恰好是大家比较喜欢的配对T检验。
某减肥班15名学员,记录了减肥前的体重,参加1个月的减肥特训后,再次称重,现在我们要考察一下一个月的减肥训练是否有效。
这个话题真的是很贴近生活吧,接下来让我们满怀期待开始SPSS非参数Wilcoxon符号秩检验吧。
数据个案只有15个,样本少的时候,真的很难看清是不是正态分布,所以使用非参数检验就显得很可贵了,我们可以不用去关注分布的问题。
在【分析】菜单中找到【非参数检验】→【相关样本】,打开对话框,【目标】选项卡选择【定制分析】,【字段】选项卡设置如下:
【设置】选项卡里面的参数比较重要,首先要在【定制检验】的检验方法中选择【威尔科克森匹配对符号秩检验】,如下:
其他参数可以不用设置。最后点击下方的【运行】按钮,软件开始执行。
来看结果吧。
原假设减肥训练前后的体重无差异,这样的事情概率是0.034(表中的显著性值),与显著性水平0.05相比呢,0.034足够小,是小概率事件,也就是说,减肥训练前后体重没有差异的概率是0.034,概率太小了,拒绝原假设。说明减肥训练前后体重发生了变化,有显著差异,有统计学意义。
我们双击上面这个统计图表,或者鼠标右键选择【编辑内容】→【在单独窗口中】,此时软件自动打开【模型查看器】,我们能看到此次分析更为细致的统计结果,结论当然是不变的。所以我们只看前面的检验表就是可以的。
为了辅助看清楚减肥训练前后的体重变化方向,我们还需要自己动手制作一个多线图,结果如下:
显然大部分的学员在减肥特训之后,体重的确是有所下滑的,减肥班报的有效果,当然也有个别的学员并没有如愿。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28