京公网安备 11010802034615号
经营许可证编号:京B2-20210330
使用Python操作MySQL的一些基本方法
前奏
为了能操作数据库, 首先我们要有一个数据库, 所以要首先安装Mysql, 然后创建一个测试数据库python_test用以后面的测试使用
CREATE DATABASE `python_test` CHARSET UTF8
导入数据库模块
import MySQLdb
连接数据库
con = MySQLdb.connect(host="localhost", user="root", passwd="******",db="python_test",port=3306)
在这里, 我们虽然拿到了python的数据库连接, 但是不能在这个对象上直接对数据库进行操作, 还需要获取对应的操作游标才能进行数据库的操作,所以还需要进行下面的操作
cur = con.cursor()
创建表格
cur.execute('create table stu_info (name char(128) not null default "", age tinyint(3) not null default 0, sex enum("man","femal") not null default "man") engine=innodb charset=utf8')
#0L
cur.execute 返回执行的sql 影响的行数, 因为这里是创建数据库, 所以是0L行
但到这里还并没有真正执行了sql语句, 必须使用MySQLdb.commit才是真正执行完毕
con.commit()
到这里, 我们的表格才算真正创建完成
同理, 往表中写数据, 也是一样的操作流程 execute ==> commit
不过, 写入数据的execute 稍有不同, 如下
更新表数据
往表中写入数据时, 执行execute 方法, 有两种方式, 一种是直接execute(sql), 然后commit 完成, sql里是写入的sql 语句
cur.execute("insert into stu_info (name, age, sex) values ('Yi_Zhi_Yu',25,'man')")
con.commit()
这会直接写入表中,但还有另外一种方式,
execute 可以接受两个参数, 第一个参数是sql语句, 不过这个sql中的values的内容使用占位符%s表示,第二个参数是实际的写入的values列表, 如下:
cur.execute("insert into stu_info (name, age, sex) values (%s,%s,%s)", ("Tony",25, "man"))
con.commit()
这种方式与第一中方式相比, 更清晰一些, 安全性也更好, 能有效防止sql注入
另外, cursor还有一个executemany, 参数和execute一样, 不过第二个参数可以传递多列表值, 达到多次执行某个语句的效果
cur.executemany("insert into stu_info (name, age, sex) values (%s,%s,%s)",(("LiMei",26,"femal"),("YuanYuan",28,"femal")))
con.commit()
这里实际上就是执行了两次插入操作
数据查询
直接看例子
cur.execute("select * from stu_info")
stus = cur.fetchall()
#stus 已经是查询的结果结合了, 格式如下:
(('Yi_Zhi_Yu', 25, 'man'),
('Tony', 25, 'man'),
('LiMei', 26, 'femal'),
('YuanYuan', 28, 'femal'))
tuple形式, 我们可以通过循环输出
for stu in stus:
print "name: %s; age: %d; sex: %s" %(stu[0], stu[1], stu[2])
输出:
name: Yi_Zhi_Yu; age: 25; sex: man
name: Tony; age: 25; sex: man
name: LiMei; age: 26; sex: femal
name: YuanYuan; age: 28; sex: femal
那上面的查询虽然得到了每行的数据, 但结果集中并没有字段名, 如果要返回字段名, 如下操作:
cur = con.cursor(cursorclass=MySQLdb.cursors.DictCursor)
cur.execute("select * from stu_info")
cur.fetchall()
返回的结果集:
({'age': 25, 'name': 'Yi_Zhi_Yu', 'sex': 'man'},
{'age': 25, 'name': 'Tony', 'sex': 'man'},
{'age': 26, 'name': 'LiMei', 'sex': 'femal'},
{'age': 28, 'name': 'YuanYuan', 'sex': 'femal'})
每个元素都是一个dict, 以key-value的形式展示了每个字段和对应的值
总结
Python 中对数据的操作, 增删改均要在指针对象执行了sql语句后, 使用连接对象commit, 查询的结果使用指针对象的fetch系列方法获取
PS: 以上皆为学习笔记, 难免有错, 欢迎指正
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21