
17年数据分析经验告诉你大数据行业的门道
本文根据具有十七年数据分析行业经验的嘉宾陈晨的纪实采访整理。
本期专访嘉宾:陈晨
简历:现任电通安吉斯 – 美库尔(DAN – Merkle) 中国(上海/南京) 数据与分析部高级总监,兼任Merkle南京公司总负责人。十七年以上美国、加拿大及中国咨询业及行业领先公司数据营销、风险分析、定量模型,客户关系管理策略的经验,拥有市场营销、定量方法 、经济计量和统计学方面坚实基础,和建立银行/金融/零售业营销模型和信用评分模型的丰富项目背景。
Q:如果企业想要挖掘数据价值,但由于种种原因,导致数据本身维度不完备,或缺失较多等情况。您能利用多年项目经验,跟我们分享一下这类企业应该怎样有效利用数据吗?
陈晨:对于广告营销而言,有用的数据维度是越多越好。即使企业自身CRM做得非常完备,有了其他数据源的补充,对于理解现有客户群体,如何进行下一步营销活动的准备都是非常有好处的。
事实上,没有任何一家数据提供商能够满足品牌所有的营销信息需求,品牌需要的是因地制宜地购买、结合与其最相关的高质量数据内容。Merkle可以利用其购买力和强大的合作伙伴网络,帮助品牌在全球范围内找到需要的数据,再结合数据整合和落地效果分析,为客户创造了战略优势。
按照Merkle常用的用户生命周期来说,我们把用户的生命周期分成接触潜在用户(获客阶段)、老客维护(互动阶段)及留存分析(促使回购阶段)。在获客阶段,Merkle可以结合其他数据来源,丰富数据维度。比如我们在为某知名在线英语教育品牌服务中,由于客户本身数据不足以支撑建模,我们就利用运营商数据和某知名科技公司数据为客户做了数据增强,用户画像及建模准确度都提高了不少。
而且和运营商数据做对接有个好处,运营商天然有接触消费者的渠道,所以这个项目的第二阶段,我们会应用模型挑选最有可能转化的消费者,通过发短信、弹窗的形式,在合适的触点做营销活动。
如果是在互动阶段,数据维度越多,我们越能基于用户行为/状态对用户分群,实现个性化交互。举例来说,我们曾为NBA提供了Loyalty Plus平台解决方案,帮助客户打造出“NBA球迷圈“。”球迷圈”是Merkle通过收集、清洗和整合多个数据源的顾客数据,确立会员策略,为NBA中国建立的客户忠诚度系统,从而可以基于球迷的行为和状态建立球迷分群,个性化地实施与球迷的有效交互。
目前该忠诚度系统已有超过60万球迷注册,活跃用户达到64%,收集到的会员交互数据将用于客户分群和定制化的服务,实现营销上升闭环的效果。对于留存分析而言,更多的做竞品分析,了解用户为何流失。
在用户生命周期的不同时段,不同对应策略
Q:什么情况下公司会考虑利用数据分析/模型来做优化,具体怎么操作,落地效果又是如何评估的呢?
陈晨:从根本来说,数据分析/建模/统计等都是用来更科学的衡量数据资产的一些方法。就我的角度来讲,只要有数据,有余力,都可以尝试从数据中感知用户,提升营销效果。
我们姑且把公司分为两类,一类是注重用户增长型的企业,一类是注重客户维系的企业,当然这个划分不是很严格的,许多企业是两者并重的。注重用户增长意味着获客,获客没有哪个企业是不需要的,但是随着互联网的兴起,数据的兴起,获客在具体做法上有了很大的改变。
互联网刚兴起的时候,大家会发现网上获客又简单又便宜,比如在搜索引擎上投一投付费广告,或者做做SEO,效果很显著。
现在呢?网上的流量越来越贵,对于某些特定行业,比如汽车或者教育,一个销售线索的成本达到了几十甚至到几百人民币,所以如何在当下环境找到有效、便宜的方法来接触到更多的潜在消费者对企业来说是很重要的。
我们现在的做法是帮助客户量身打造一个精准获客的策略和完整的CRM(CustomerRelationship Marketing客户关系营销)解决方案。
首先了解到客户现有的获客流程,基于行业和客户自身特点提出解决方案,落地之后还可以通过与历史数据对比来看效果如何,在这个过程中我们又学习到什么,再去调整具体的操作或者实施步骤,形成闭环优化的结果。以某著名电脑品牌客户为例,原来的获客方法就是做线上线下活动,网上购买一些用户资源,但是我们可以帮他做细,我们可以通过模型来挑选出对品牌感兴趣的人群,在此基础上再做活动,省钱省力。
之后在转化阶段,原先客户的方法就是通过电话中心接触,或者直销的形式,我们可以丰富这些手段,比如可以结合数据来核实用户的真实意图和具体需求,在接触到的时候做到个性化推荐;或者可以用模型对这些用户做分群,之后再促进转化,都是非常好的方法。
Merkle CRM解决方案流程图
对于注重客户维系的企业,我们可以帮助企业建立用户价值和生命周期的体系。用户价值的主要目标是作为投资标准,而对用户的投资有多种形式:比如为高价值用户提供更频繁、便利的服务;在营销活动中为不同用户提供定制化的接触策略等。
我们在确定用户价值时会考虑很多因素,比如考虑到任期,流失,风险,营销和服务成本,交易历史以及预期的未来盈利能力和收入。而且用户价值会随着其生命周期的改变而改变,这是一个动态的过程,完全可以在这种变化中放大营销效果和增加决策正确性。还是举电脑行业的例子,我们可以结合用户历史购买/保修/网上浏览等行为,给每一个用户一个生命周期所在阶段,然后在合适的时间点接触到用户。
Q:能否给志在从事大数据行业的年轻人一些您的意见?
陈晨:我觉得从事大数据行业首先要可以沉得下心来,必须能够掌握一两种常用的数据分析工具,比如R,Python等,能够进行一定程度的编程,这样才能对数据理解和分析有一个直观的学习深入过程,也可以训练新人的数学和逻辑思维能力。
当然这是进入行业的基本前提。然后是要有一定的统计学基础和商业分析能力,能够迅速地从数据分析的结果中得出对商业运用或其他相关专业领域的洞察和应用方向。简单地说不是把模型跑出来,图表画出来就完事儿了,还需要能够从模型结果和数据可视化呈现中推断总结出后面真正的故事和意义。
在这些基本的能力和技能掌握后,要保持持续学习的心态,不断追随和了解行业最新动态和趋势,并能够横向进行多产业方向的融汇贯通。另外,大数据分析专业往往需要和不同部门,不同类型的客户进行沟通、讲解,所以如果在职业生涯的后端需要保持持续发展的竞争力,能用专业和非专业的语言和不同层次背景的合作方进行有效沟通也是必不可少的技能。
这次的访谈到此结束,谢谢陈晨分享关于数据整合/增强、数据分析和建模的一些项目经验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15