
小议Python中自定义函数的可变参数的使用及注意点
Python函数的默认值参数只会在函数定义处被解析一次,以后再使用时这个默认值还是一样,这在与可变参数共同使用时便会产生困惑,下面就来小议Python中自定义函数的可变参数的使用及注意点
可变参数
Python的可变参数有两种,一种是列表类型,一种是字典类型。列表类型类似 C 中的可变参数,定义方式为
def test_list_param(*args) :
for arg in args :
print arg
其中 args 是一个 tuple。
字典类型的可变参数:
def test_dict_param(**args) :
for k, v in args.iteritems() :
print k, v
其中 args 是一个 dictionary
可以分别传递 tuple 和 dictionary 给相应的可变参数,格式如下
a = (1, 2, 3)
b = {"a":1, "b":2, "msg":"hello"}
test_list_param(*a)
test_dict_param(**b)
带默认参数的函数
函数的带默认值参数能够很大程度上方便我们使用:一般情况下可以省略传参使用参数的默认值,也可以主动传参;调用的时候也不用在意参数的顺序方便使用,并且直接、显式;甚至还能用来当作魔法值,做一些逻辑上的控制。
但是由于python的默认值参数只会在函数定义处被解析一次,此后每次调用函数的时候,默认值参数都会是这个值了。碰到一些不可变的数据类型比如:整型,字符串,元祖之类的还好,但如果碰到可变类型的数据比如数组的话,就会有发生一些意想不到的事情。
让我们举一个简单的例子说明一下:
def add_to(num, target=[]):
target.append(num)
print id(target), target
add_to(1)
# Output: 39003656, [1]
add_to(2)
# Output: 39003656, [1, 2]
add_to(3)
# Output: 39003656, [1, 2, 3]
很显然如果你是想每次调用函数都能得到一个新的包含期望结果的数组,肯定不能如愿了。函数add_to的参数target在函数第一次被解析的时候会被赋值成空的数组,因为只会被解析一次,以后每次调用的时候都会在这个target变量的基础上进行操作,变量的id值也完全一样。想要得到预期的结果,可以为这种可变数据类型的参数指定一个None来表示空值:
a = (1, 2, 3)
b = {"a":1, "b":2, "msg":"hello"}
test_list_param(*a)
test_dict_param(**b)
在python的世界里,参数是按标识符传递(粗暴点解释就是按引用传递的),你需要担心的是参数的类型是否是可变的:
>>> def test(param1, param2):
... print id(param1), id(param2)
... param1 += 1
... param2 += 1
... print id(param1), id(param2)
...
>>> var1 = 1
>>> var2 = 2
>>> print id(var1), id(var2)
36862728 36862704
>>> test(var1, var2)
36862728 36862704
36862704 36862680
可变的数据类型,函数局部作用域里面的任何改变会保留在数据上;不可变的数据类型,发生的任何改变都只会体现在新生成的局部变量上,如同上面的列子中所示的效果,读者可以对比一下。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-07CDA 一级考试内容详解 CDA(Certified Data Analyst)即数据分析师认证,一级考试作为该认证体系中的入门级别考试,主要面向零基 ...
2025-08-07中介分析的 SPSS 结果解读:从原理到实践 在社会科学、医学、心理学等领域的研究中,变量之间的关系往往并非简单的直接影响,而 ...
2025-08-07