
对付大数据的小伎俩
大数据是当前的热门话题。各行各业,到处都有人谈论大数据。就人的基因来说,大数据这部“天书”总共30亿个字。在检验过程中,为了不看走眼大数据,保证结论准确可靠,惯例是每一个字检验30次以上。因为30亿的数据量实在太大,需要通过相当程度的重复来排除错误。为了把一个人的基因通读一遍,得念1000亿个字,真真的就是大数据。
先不说如何分析、解读这部书,如何理解全书或者它的某些章节、段落的含意。挖掘大数据所蕴含的宝藏是一个难题。生物信息学是当今的热门专业,非常抢手。我们只看第一步,生物学家要动用什麽样的心思和手段,才能把这套数据拿到手。
基因技术上的改进共有3次,但是远远没有到达终点。
最初的技术,一次只能读100个字。100对1000亿,那是愚公移山。於是人们着手改进技术,增加长度。成就也不能说没有,终於可以从100个读到1000个了,手工操作也改成机器自动化了。十年过去,提高了十倍。然而,1000是该技术的极限,再也难以延长。
这时,有人想到了把基因分成小组。大数据不好对付,分班分组可以减轻负担。首先把基因切断成大片段,再想办法将这些大片段复制几万份,满足后续操作需要;然后分头检测各个片段。拿到数据后,先把大片段组装出来,作为骨架;再用骨架搭出整个基因组。
这里头的每一步都是可以做到的,人们努力的方向自然而然就从增加读长改成了增加基因片段的长度。增加长度很容易,但是长片段的复制是一个问题,操作繁琐,速度简直就是乌龟爬。
面对这种窘境,文特尔想起了猎鸟。身处旷野,鸟儿的个头实在是太小了。它们飞在空中,即使看见了,打下来也不容易。霰弹枪是对付飞鸟的有效武器。一打一片,碰到鸟儿的机会比较多。基因散布在数据的汪洋大海中,要抓住同样不容易。也许霰弹枪也是对付基因的一个办法?文特尔的想法是跳过困难的长片段复制,把基因打成更短的片段,直接测序。短片段的复制比较容易,好比霰弹;短片段拼基因组,好比拼图游戏。
突然有人提出这样的胡思乱想,冀求朝天胡乱放一枪就碰到个把基因,完全不被看好。鸟枪法遭致一片反对。由於申请不到经费,文特尔干脆自己动手,成立了一家公司,与官方研究机构展开竞赛。他们很快就测定了果蝇和人类的基因,速度之快,可比兔子。号称可以与阿波罗登月计划相媲美的人类基因组计划,在鸟枪法加入竞争之后,迅速完成了。当美国总统宣布该计划完工的时候,当初申请不到经费的人也站在克林顿旁边。
从此,所有人都倒向鸟枪法。
每次只拿一条序列,速度还是成问题。人基因组计划历时10年,光文特尔的私人公司就花了10亿美金,只测出一个人的基因。还有谁能付得起这样的代价呢?於是,提高规模就成了紧迫的任务。如果一次检验能拿到几百万条序列,读基因不就像读小说了吗?这一看似不可能的梦想,人们还真的通过平行测序做到了。但是任何事情都有两面。为了实现超大规模,就不得不牺牲长度,由1000倒退回100。新技术刚起步的时候还要短,只有区区35个字,简直令人齿冷。尽管长度短,数据总量却不少,是原来的6百万倍。靠长度35的片段居然能拼出基因组,不能不令人惊叹。基因技术终於跨出了一大步,被尊为第二代。
官二代、富二代,都不如基因技术第二代。这一跨越留给人们的印象实在太深了,流风余韵,以至今天,尽管二代技术的长度能轻松达到两三百,还是经常有人问:你们还做35吗?
片段化看似笨拙、凌乱,没有效率,却是快刀斩乱麻地解决复杂问题、对付大数据的不二法门。我们做美味的狮子头,要把五花肉乱刀剁碎。被剁碎的基因组,味道也很鲜美。
创新没有止境。新技术虽然大获成功,但是读长实在短了点,对不住人,数据组装相当吃力。那是用筷子拼出京广线的活儿,计算机都是一屋子、一屋子地摆着,蔚为壮观,也令人望洋兴叹。如何提高效率呢?人们又想起了基因分组的老黄历。把基因切成大片段后,分别做好标记,各自处理成二代测序所要求的长短,再混合起来一起测序。在数据组装的时候,先按记号分别组装,形成骨架,再用骨架进行第二轮组装。本来一步完成的任务,现在分成两步,计算机的负担大大降低。想出这个金点子的人也成立了一家公司,总共只有6名员工。小公司被大公司收购,花费1.6亿美元。
看完近30年来基因技术的发展历程,你也许很不服气:这算什麽,也不过大虫拿人,只是一扑、一掀、一剪;对付基因组,只有延长、分组、拼图三招,程咬金的三板斧,来回折腾。是的,治大国若烹小鲜,对付大数据,要用小片段。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07