
R语言基于模型的聚类方法处理
说明
与使用启发式方法而非依赖某个形式化模型的层次聚类和K均值聚类不同,基于模型的聚类算法假设存在多种数据模型,并使用EM算法来判断可能性最大的数据模型作为对数据处理进行聚簇处理的依据。
操作
使用customer数据库
mb = Mclust(customer)
fitting ...
|==============================================================================================================================| 100%
> plot(mb)
Model-based clustering plots:
1: BIC
2: classification
3: uncertainty
4: density
Selection:
选择“1”得到不同成分的BIC值:
选择“2”显示不同特征值的分类结果:
选择“3”,显示根据不同特征组合的分类不确定性:
选择4,得到不同的密度估计值
密度估计值
选择0,退出绘图菜单。
最后,使用summary函数获得似然性最大的模型以及聚簇的个数:
summary(mb)
----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------
Mclust VII (spherical, varying volume) model with 5 components:
log.likelihood n df BIC ICL
-218.6891 60 29 -556.1142 -557.2812
Clustering table:
1 2 3 4 5
11 8 17 14 10
原理
基于模型的聚类算法没有采用启发方法来构建簇,而是采用基于概率的方法,算法假设样例数据分布服从某个未知的概率分布,并试图从数据找出这个分布。有限混合模型是一类常见基于模型的方法,单个模型被分配一个线性权重再组合得到模型的结果,因而有限混合模型能够提供一个灵活的模型框架来解释数据分布概率。
假设数据y = (y1,y2,…,yn)包括n个独立多元观测值,G是模型成分的个数,有限混合模型似然公式:
其中f(k)与O(k)是混合模型中第k个模型的密度与参数,T(K)是观测样本属于第K个模型的概率。
基于模型的聚类算法处理过程可以分成以下几个步骤:
1.算法确定好模型的数量以及概率分布类型
2.构建一个有限混合模型并计算每个模型类别的后验概率
3,最后将样本观测值分配到概率最大的类别中
本节展示了如何使用基于模型的聚类算法完成数据的划分。由BIC图我们可以知道模型的BIC值,通过这个值我们可以选择簇的个数,分类结果示意图和分类不确定性示意图分别展示了根据不同的维度组合得到的组合得到的簇结果和分类不确定性。密度图显示了密度估计值的等高线图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23