
R语言使用密度聚类笔法处理数据
说明
除了使用距离作为聚类指标,还可以使用密度指标来对数据进行聚类处理,将分布稠密的样本与分布稀疏的样本分离开。DBSCAN是最著名的密度聚类算法。
操作
将使用mlbench包提供的仿真数据
library(mlbench)
library(fpc)
使用mlbench库绘制Cassini问题图:
set.seed(2)
p = mlbench.cassini(500)
plot(p$x)
根据数据密度完成聚类:
ds = dbscan(dist(p$x),0.2,2,countmode = NULL,method = "dist")
> ds
dbscan Pts=500 MinPts=2 eps=0.2
1 2 3
seed 200 200 100
total 200 200 100
绘制聚类结果散点图,属于不同簇的数据点选用不的颜色:
plot(ds,p$x)
根据聚簇标号绘制的彩色散点图
调用dbscan来预测数据点可能被划分到那个簇,在样例中,首先在矩阵P中处理三个输入值:
生成y矩阵
y = matrix(0,nrow = 3,ncol = 2)
y[1,] = c(0,0)
y[2,] = c(0,-1.5)
y[3,] = c(1,1)
y
[,1] [,2]
[1,] 0 0.0
[2,] 0 -1.5
[3,] 1 1.0
预测数据点属于那个簇:
predict(ds,p$x,y)
[1] 3 1 2
原理
基于密度的聚类算法利用了密度可达以及密度相连的特点,因而适用于处理非线性聚类问题。当探讨密度聚类算法的处理过程前,我们要知道基于密度的聚类算法通常需要考虑两个参数,eps和MinPts,其中eps为最大领域半径,MinPts是领域半径范围内的最小点数。
确定好这两个参数后,如果给定对象其领域范围内的样本点个数大于MinPts,则称该对象为核心点。
如果一个对象其领域半径范围内的样本点个数小于MinPts,但紧挨着核心点,则称该对象为边缘点。
如果P对象的eps领域范围内样本点个数大于MinPts,则称该对象为核心对象。
进一步,我们还要定义两点间密度可达的概念,给定两点p和q,如果p为核心对象,且q在p的eps邻域内,则称p直接密度可以达q。如果存在一系列的点,p1,p2,…,pn。且p1 = q,pn = p,根据Eps和MinPts的值,当1<=i<=n,pi + 1 直接密度可以达pi,则称p的一般密度可以达q。
DBSCAN处理过程:
1.随机选择一个点p
2.给定Eps和MinPts的条件下,获得所有p密度可达的点
3.如果p是核心对象,则p和所有p密度可达的点被标记成一个簇,如果p是一个边缘点,找不到密度可达点,则将其标记为噪声。接着处理其它点。
4.重复这个过程,直到所有的点被处理。
本例使用dbscan算法聚类Cassini数据集,将可达距离设置为0.2,最小可达点个数设置为2,计算进度设为NULL,使用距离矩阵做为计算依据。经过算法处理,数据被划分成三个簇,每个簇的大小分别为200,200,100.通过聚簇的结果示意图也可以发现Cassini图被不同颜色区分开来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23