京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如今,数据量越来越大。近年来,企业已经意识到数据分析可以带来的价值,并且已经开始采用。企业现在的设备几乎都在监测和测量,并创造了大量的数据,通常比企业处理的更快。其问题是,而正因为大数据定义为“大数据”,所以数据收集的小差异或错误可能会导致出现重大问题,错误信息和不准确的推论。
有了大量数据,就能够以业务为中心的方式来分析它的挑战,实现这一目标的唯一方法就是确保企业制定数据管理策略。
然而,有一些技术可以优化企业大数据分析,并最大限度地减少可能渗透这些大数据集的“噪点”。这里有五个技术措施:
(1)优化数据收集
数据收集是最终导致业务决策的事件链中的第一步,确保收集的数据和业务感兴趣的指标的相关性非常重要。
定义对企业有影响的数据类型,以及分析如何增加价值。基本上,考虑客户行为,以及这将对企业的业务有何适用性,然后使用此数据进行分析。
存储和管理数据是数据分析中的重要一步。因此,必须保持数据质量和分析效率。
(2)清除垃圾数据
垃圾数据是大数据分析的祸患。这包括不准确,冗余或不完整的客户信息,可能会对算法造成严重破坏,并导致分析结果不佳。根据垃圾数据做出的决策可能会带来麻烦。
清洁数据至关重要,涉及丢弃不相关的数据,只保留高品质的数据,当前,为了获得完整和相关的数据,人工干预不是理想的模式,不可持续并且受主观影响,因此数据库本身需要被清理。这种类型的数据以各种方式渗透到系统中,其中包括随时间推移而变化,如更改客户信息或数据仓库中存储可能会损坏数据集。垃圾数据可能会对营销和潜在客户生产等行业产生明显的影响,但通过基于故障信息的业务决策,财务和客户关系也会受到不利影响。其后果也是广泛的,包括挪用资源,浪费时间和精力。
解决垃圾数据难题的方法是确保数据进入系统得到干净的控制。具体来说,重复免费,完整和准确的信息。如今,那些具有专门从事反调试技术和清理数据的应用程序和企业,可以对任何对大数据分析感兴趣的公司进行调查。数据清洁是市场营销人员的首要任务,因为数据质量差的连锁效应可能会大大提高企业成本。
为了获得最大的数据量,企业必须花时间确保质量足以准确地查看业务决策和营销策略。
(3)标准化数据集
在大多数商业情况下,数据来自各种来源和各种格式。这些不一致可能转化为错误的分析结果,这将会大大扭曲统计推断结果。为了避免这种可能性,必须决定数据的标准化框架或格式,并严格遵守。
(4)数据整合
大多数企业如今组成不同的自治部门,因此许多企业都有隔离的数据存储库或数据“孤岛”。这是具有挑战性的,因为来自一个部门的客户信息的更改将不会转移到另一个部门,因此他们将根据不准确的源数据进行决策。
为了解决这个问题,采用中央数据管理平台是必要的,整合所有部门,从而确保数据分析的准确性更高,所有部门的任何变化都可以立即访问。
(5)数据隔离
即使数据干净,将其组织和集成在一起,也可能是分析问题。在这种情况下,将数据分成几组是有帮助的,同时牢记分析正在尝试实现什么。这样,可以分析子群体内的趋势,这些趋势可能更有意义并具有更大的价值。当查看可能与整个数据集可能无关的高度具体的趋势和行为时尤其如此。
数据质量对大数据分析至关重要。许多公司试图采用分析软件,但却没有考虑到进入系统做什么。这将导致不准确的推断和解释,可能代价昂贵,并且对企业造成损害。一个定义明确,管理良好的数据库管理平台是使用大数据分析的企业不可或缺的工具。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27