
python 实例简述 k-近邻算法的基本原理
首先我们一个样本集合,也称为训练样本集,在训练样本集中每个数据都存在一个标签用来指明该数据的所属分类。在输入一个新的未知所属分类的数据后,将新数据的所有特征和样本集中的所有数据计算距离。从样本集中选择与新数据距离最近的 k 个样本,将 k 个样本中出现频次最多的分类作为新数据的分类,通常 k 是小于20的,这也是 k 的出处。
k近邻算法的优点:精度高,对异常值不敏感,无数据输入假定。
k 近邻算法的缺点:时间复杂度和空间复杂度高
数据范围:数值型和标称型
简单的k 近邻算法实现
第一步:使用 python 导入数据
from numpy import *
import operator
'''simple kNN test'''
#get test data
def createDataSet():
group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels=['A','A','B','B']
return group,labels
作为例子,直接创建数据集和标签,实际应用中往往是从文件中读取数据集和标签。array 是 numpy 提供的一种数据结构,用以存储同样类型的数据,除了常规数据类型外,其元素也可以是列表和元组。这里 group 就是元素数据类型为 list 的数据集。labels 是用列表表示的标签集合。其中 group 和 labels 中的数据元素一一对应,比如数据点[1.0,1.1]标签是 A,数据点[0,0.1]标签是 B。
第二步:实施 kNN 算法
kNN 算法的自然语言描述如下:
1. 计算已知类别数据集中的所有点与未分类点之间的距离。
2. 将数据集中的点按照与未分类点的距离递增排序。
3. 选出数据集中的与未分类点间距离最近的 n 个点。
4. 统计这 n 个点中所属类别出现的频次。
5. 返回这 n 个点中出现频次最高的那个类别。
实现代码:
def classify0(inX,dataSet,labels,k):
dataSetSize=dataSet.shape[0]
diffMat=tile(inX,(dataSetSize,1))-dataSet
sqDiffMat=diffMat**2
sqDistances=sqDiffMat.sum(axis=1)
distances=sqDistances**0.5
sortedDistIndicies=distances.argsort()
classCount={}
for i in range(k):
voteIlabel=labels[sortedDistIndicies[i]]
classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
classify0函数中的四个参数含义分别如下:inX 是希望被分类的数据点的属性向量,dataSet 是训练数据集向量,labels 是标签向量,k 是 kNN 算法的参数 k。
接下来来看看本函数的语句都做了那些事。
第一行dataSetSize=dataSet.shape[0],dataSet 是 array 类型,那么dataSet.shape表示 dataSet 的维度矩阵,dataSet.shape[0]表示第二维的长度,dataSet.shape[1]表示第一维的长度。在这里dataSetSize 表示训练数据集中有几条数据。
第二行tile(inX,(dataSetSize,1))函数用以返回一个将 inX 以矩阵形式重复(dataSetSize,1)遍的array,这样产生的矩阵减去训练数据集矩阵就获得了要分类的向量和每一个数据点的属性差,也就是 diffMat。
第三行**在 python 中代表乘方,那么sqDiffMat也就是属性差的乘方矩阵。
第四行array 的 sum 函数若是加入 axis=1的参数就表示要将矩阵中一行的数据相加,这样,sqDistances的每一个数据就代表输入向量和训练数据点的距离的平方了。
第五行不解释,得到了输入向量和训练数据点的距离矩阵。
第六行sortedDistIndicies=distances.argsort(),其中 argsort 函数用以返回排序的索引结果,直接使用 argsort 默认返回第一维的升序排序的索引结果。
然后创建一个字典。
接下来进行 k 次循环,每一次循环中,找到 i 对应的数据的标签,并将其所在字典的值加一,然后对字典进行递减的按 value 的排序。
这样循环完成后,classCount 字典的第一个值就是kNN 算法的返回结果了,也就是出现最多次数的那个标签。
二维的欧式距离公式如下,很简单:
相同的,比如说四维欧式距离公式如下:
第三步:测试分类器
在测试 kNN 算法结果的时候,其实就是讨论分类器性能,至于如何改进分类器性能将在后续学习研究中探讨,现在,用正确率来评估分类器就可以了。完美分类器的正确率为1,最差分类器的正确率为0,由于分类时类别可能有多种,注意在分类大于2时,最差分类器是不能直接转化为完美分类器的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11