
面对大数据过分渲染宣传,你需要了解的9件事
大数据和开放数据不是一回事,但他们有着密切的联系(正如我在主题发言稿“未来的大数据将会开放到什么程度?”上写到的)。我们正在关注的大数据一些趋势和话题与开放数据也有关系。按照这样的脉络,就出炉了这篇我在去哥伦布的路上学到的《了解大数据的九件事》。在研讨会的官网上可以看到我用黑体标注的人们的名字。
为大数据的激烈反应做好准备。很多演讲者提到了“大数据过分渲染宣传”的话题,认为大数据被讨论得如此热烈,以至于我们现在可以进入一个反应性的循环。MikeNelson对他在公开场合看到的逐渐出现的“垃圾数据”提出了责难,甚至建议我们应该重新命名大数据,它可以有一个“大兄弟”–就像很多人一样。他建议改名为:BFFMUDD,是大(Big)、肥(Fat)、快(Fast)、乱(Messy)、非结构化(Unstructured)、分布式数据(DistributedData)的缩写。
意识到“大数据的狂妄自大”.好几位演讲者引用了一份新报告,报告显示,“Google流感趋势”–大数据预测价值的首批大范例之一–被证明非常不准确。显然,Google可能自作聪明地以一种错误的方式调整了其算法。不管什么样的错误,这都是个教训,表明如果不着眼于更广阔的图景,而只是试图通过碾碎数据来发现真相,通常情况下无法获得预期效果。
数据不能代替判断。数据,尤其大数据是可以帮助人类做出决策的工具,但不能起到代替的作用。RayHarishankar是这样说的:“数据加上分析是信息,信息加上语境可以提供洞察力,洞察力必定能导向正确的行动,正确的行动则带来提升价值的结果”.
相关关系不能强过理论。一些大数据的倡导者认为大数据几乎让理论变得多余:他们说,有了足够的数据,即使没有理论说明其原因,我们也可以发现很多重要和有益的模式和趋势。确实,简单的相关关系在一定程度上就可以驱动精确的预测。但即便是具备预测分析的能力,也并不意味着你就能真正地理解你正在研习的系统是如何运行的。EytanAdar建议我们审视大数据范围从预测性到解释性的所有相关努力,并且更多地关注如何理解我们所看到的东西,而不是仅仅关注可预测未来的模式。
大数据正在-冒着风险–追踪一个“移动”
社会。在全球范围,移动设备都已经成为人类的首选在线连接工具。FarnamJahanian指出到2015年全球移动设备的数量将是人口数量的两倍,所有的设备都可以发送位置信息和其它数据给能够收集这些数据的公司。这将成为未来社会大数据的主要来源之一。但KateCrawford?指出了这里的隐私风险:由于人类移动行为模式的独特性,你可以仅用3-4个手机生成的数据点就能识别一个人。
大数据能帮助–或者损害城市的民主体制。正如HarveyMiller所说,通过手机数据、远程环境感应器、激光生成的航空地图和更多工具来追踪城市活动的能力,可以给我们创造拥有更高代谢功能的超级协调城市。(遗憾的是,我不得不在MichaelBatty关于城市分析的主题演讲之前离开,不过他在个人网站上提供了演讲内容)但是,KateCrawford在这里再次提出了警告。如果我们不小心,城市数据收集就会不对称地帮助富人而伤害穷人。比如,波士顿的StreetBumpAPP应用通过追踪智能手机的摆动状态来收集坑洼里的数据,用志愿者的数据来反映一条道路的颠簸不平。但大多数智能手机的拥有者都属于生活富裕的人群,以至于最初是在更富有的地区监测和修复坑洼–这是StreetBump目前正在致力于修正的难题。在相反的另一面,“预测监控”正在被用于将警察管制实施于预测将会有高犯罪率的地区,这将导致歧视性的执法。
隐私仍然事关要紧。忘掉那些宣称公众,尤其是年轻人已经放弃隐私的报告吧。我们仍然关心隐私问题,只是不知道该怎么做。这里有两个考虑因素:我们想知道政府机构或数据跟踪公司收集到了哪些关于我们的数据信息,以及如果我们不喜欢,则想让他们停止收集。关于如何解决这些考虑因素还不是很清晰。会上的一些发言者建议采用简单的解决方案:让政府和公司对它们正在收集的数据更公开透明,这是一些人称之为“互相确认的公开”的方法。但是一个长期的透明度倡导者GaryBass说,这个建议的解决方案“不是真实的世界。在过去的30年里,我拼命地斗争让数据变得可获取,而政府和公司则拼命地让数据不可获取……这是一场旷日持久的斗争”.正如其他人所说,这里的风险在于我们可能增强了数据收集者和被收集者之间的力量不对称性。
大数据应当展现数据之美。数据可视化方面的迅速进步正在创造一些美轮美奂的效果。比如,看一看这部“体验自行车人流”的视频,逐渐解析伦敦自行车交通的数据,展示俄亥俄州超级计算机中心最清晰的模式和部分已经完成的可视化作品。类似这样的数据可视化并不仅仅关乎美学,而是与理解息息相关。IBM公司的一位数据可视化专家AngelaShen-Hsieh谈到人们需要使数据更加“适合人类消费”,以及关注从计算机屏幕到人脑的信息传递旅程中的“最后18英寸”.
大数据将(很有可能)产生大价值。抛开所有的警告不管,大数据中有很多社会价值和经济价值可以发掘。麦肯锡几年前一份具有里程碑意义的大数据报告预测它将撬动数万亿美元的经济价值。这项研究的联合作者,微软公司的AngelaByers?今天说到,也许仍需要5-10年时间才能产生这样的价值,部分原因是我们仍然面临一个重要的技能鸿沟:即可获得的数据数量和清楚如何利用这些数据的人的数量之间存在的差距。但是经济价值正在逐步显现,并且以某种令人惊异的方式呈现。JohanBollen和他的团队成员运用Twitter上的大数据情感分析来预测股票市场:他们计算Twitter上的“镇静”情绪来预测道琼斯指数三天后的收盘点位。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11