京公网安备 11010802034615号
经营许可证编号:京B2-20210330
面对大数据过分渲染宣传,你需要了解的9件事
大数据和开放数据不是一回事,但他们有着密切的联系(正如我在主题发言稿“未来的大数据将会开放到什么程度?”上写到的)。我们正在关注的大数据一些趋势和话题与开放数据也有关系。按照这样的脉络,就出炉了这篇我在去哥伦布的路上学到的《了解大数据的九件事》。在研讨会的官网上可以看到我用黑体标注的人们的名字。
为大数据的激烈反应做好准备。很多演讲者提到了“大数据过分渲染宣传”的话题,认为大数据被讨论得如此热烈,以至于我们现在可以进入一个反应性的循环。MikeNelson对他在公开场合看到的逐渐出现的“垃圾数据”提出了责难,甚至建议我们应该重新命名大数据,它可以有一个“大兄弟”–就像很多人一样。他建议改名为:BFFMUDD,是大(Big)、肥(Fat)、快(Fast)、乱(Messy)、非结构化(Unstructured)、分布式数据(DistributedData)的缩写。
意识到“大数据的狂妄自大”.好几位演讲者引用了一份新报告,报告显示,“Google流感趋势”–大数据预测价值的首批大范例之一–被证明非常不准确。显然,Google可能自作聪明地以一种错误的方式调整了其算法。不管什么样的错误,这都是个教训,表明如果不着眼于更广阔的图景,而只是试图通过碾碎数据来发现真相,通常情况下无法获得预期效果。
数据不能代替判断。数据,尤其大数据是可以帮助人类做出决策的工具,但不能起到代替的作用。RayHarishankar是这样说的:“数据加上分析是信息,信息加上语境可以提供洞察力,洞察力必定能导向正确的行动,正确的行动则带来提升价值的结果”.
相关关系不能强过理论。一些大数据的倡导者认为大数据几乎让理论变得多余:他们说,有了足够的数据,即使没有理论说明其原因,我们也可以发现很多重要和有益的模式和趋势。确实,简单的相关关系在一定程度上就可以驱动精确的预测。但即便是具备预测分析的能力,也并不意味着你就能真正地理解你正在研习的系统是如何运行的。EytanAdar建议我们审视大数据范围从预测性到解释性的所有相关努力,并且更多地关注如何理解我们所看到的东西,而不是仅仅关注可预测未来的模式。
大数据正在-冒着风险–追踪一个“移动”
社会。在全球范围,移动设备都已经成为人类的首选在线连接工具。FarnamJahanian指出到2015年全球移动设备的数量将是人口数量的两倍,所有的设备都可以发送位置信息和其它数据给能够收集这些数据的公司。这将成为未来社会大数据的主要来源之一。但KateCrawford?指出了这里的隐私风险:由于人类移动行为模式的独特性,你可以仅用3-4个手机生成的数据点就能识别一个人。
大数据能帮助–或者损害城市的民主体制。正如HarveyMiller所说,通过手机数据、远程环境感应器、激光生成的航空地图和更多工具来追踪城市活动的能力,可以给我们创造拥有更高代谢功能的超级协调城市。(遗憾的是,我不得不在MichaelBatty关于城市分析的主题演讲之前离开,不过他在个人网站上提供了演讲内容)但是,KateCrawford在这里再次提出了警告。如果我们不小心,城市数据收集就会不对称地帮助富人而伤害穷人。比如,波士顿的StreetBumpAPP应用通过追踪智能手机的摆动状态来收集坑洼里的数据,用志愿者的数据来反映一条道路的颠簸不平。但大多数智能手机的拥有者都属于生活富裕的人群,以至于最初是在更富有的地区监测和修复坑洼–这是StreetBump目前正在致力于修正的难题。在相反的另一面,“预测监控”正在被用于将警察管制实施于预测将会有高犯罪率的地区,这将导致歧视性的执法。
隐私仍然事关要紧。忘掉那些宣称公众,尤其是年轻人已经放弃隐私的报告吧。我们仍然关心隐私问题,只是不知道该怎么做。这里有两个考虑因素:我们想知道政府机构或数据跟踪公司收集到了哪些关于我们的数据信息,以及如果我们不喜欢,则想让他们停止收集。关于如何解决这些考虑因素还不是很清晰。会上的一些发言者建议采用简单的解决方案:让政府和公司对它们正在收集的数据更公开透明,这是一些人称之为“互相确认的公开”的方法。但是一个长期的透明度倡导者GaryBass说,这个建议的解决方案“不是真实的世界。在过去的30年里,我拼命地斗争让数据变得可获取,而政府和公司则拼命地让数据不可获取……这是一场旷日持久的斗争”.正如其他人所说,这里的风险在于我们可能增强了数据收集者和被收集者之间的力量不对称性。
大数据应当展现数据之美。数据可视化方面的迅速进步正在创造一些美轮美奂的效果。比如,看一看这部“体验自行车人流”的视频,逐渐解析伦敦自行车交通的数据,展示俄亥俄州超级计算机中心最清晰的模式和部分已经完成的可视化作品。类似这样的数据可视化并不仅仅关乎美学,而是与理解息息相关。IBM公司的一位数据可视化专家AngelaShen-Hsieh谈到人们需要使数据更加“适合人类消费”,以及关注从计算机屏幕到人脑的信息传递旅程中的“最后18英寸”.
大数据将(很有可能)产生大价值。抛开所有的警告不管,大数据中有很多社会价值和经济价值可以发掘。麦肯锡几年前一份具有里程碑意义的大数据报告预测它将撬动数万亿美元的经济价值。这项研究的联合作者,微软公司的AngelaByers?今天说到,也许仍需要5-10年时间才能产生这样的价值,部分原因是我们仍然面临一个重要的技能鸿沟:即可获得的数据数量和清楚如何利用这些数据的人的数量之间存在的差距。但是经济价值正在逐步显现,并且以某种令人惊异的方式呈现。JohanBollen和他的团队成员运用Twitter上的大数据情感分析来预测股票市场:他们计算Twitter上的“镇静”情绪来预测道琼斯指数三天后的收盘点位。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27