京公网安备 11010802034615号
经营许可证编号:京B2-20210330
基于R统计分析—探索性数据分析
数据的统计分析分为描述性统计分析和统计推断两部分, 前者又称为探索性统计分析, 它是通过绘制统计图形、编制统计表格、计算统计量等方法来探索数据的主要分布特征, 揭示其中存在的规律. 探索性数据分析是进行后期统计推断的基础.
本文着重于数据集的数字化探索。程序包DAAG中有内嵌数据集“possum”,它包括了从维多利亚南部到皇后区的七个地区的104只负鼠(possum)的年龄、尾巴的长度、总长度等14个特征值,选用这套数据集进行分析。
备注:对于每一变量,给出了样本总个数(n),缺失样本数(missing)、水平个数(unique),并列出每一水平的取值、频数和频率。这里需要说明的是,对于case变量,输出结果给出了频率最低和最高的5个水平值,在数据分布有偏情况下,这些水平值很有可能成为异常值。
备注:输出结果包括前面给出的样本数(nobs),缺失值(NAs),最小值最大值,同时也有特有的指标,变量取值之和(Sum),标准误差均值(SE Mean)、95%的置信水平上下限、方差、标准误差,以及两个分布指标偏度和峰度。
备注:偏度用来衡量数据的堆成程度,以正太分布为基准。当服从正太分布时,偏度为0;当介于[-1,1]之间时,说明数据分布的对称性较强;当绝对值大于1时,则认为数据存在显著偏倚,为正时有右偏的趋势,反之左偏。
峰度用来衡量数据分布形态的陡缓程度,以正太分布为基准。当值为0时,说明与正太分布相同,即标准峰度;当峰度大于0时,则表示该数据分布与正太分布相比较为陡峭,为尖顶峰度;当峰度小于0时,则表示该数据分布与正太分布相比较为平坦,为平顶峰度。
备注:最左边一列:101表示无缺失值样本总数,2表示age缺失2个样本,1表示footlgth缺失1个样本;最下边一行对应每个属性缺失的样本个数,其中最后一个3表示总缺失值个数;最右边一列表示对应行几个变量发生缺失的情况。
#相关性
cor(possum$case,possum$site)
var=c(5:9)
cor_matrix=cor(possum[var],use="pairwise") #对5个变量两两计算相关系数
library(ellipse)#可视化相关图
plotcorr(cor_matrix,col=rep(c("white","black"),5))
备注:圆形的宽窄表示相关性的高低,两变量对应的圆形越窄,表明其相关性越高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31