
关于数据治理,你需要知道些什么
每个有效的数据库都需要精心设计的模式(Schema),以保持数据干净,避免冲突,满足用户的各种需求,适应未来的扩展。同样,每个有效的企业数据计划都离不开数据治理,也就是精心设计的政策,以明确职责、解决不同利益相关方之间的冲突,提供维护和扩展,保护敏感信息。
数据治理的关注点通常包括:
长远规划:识别战略需求,寻求管理层对数据计划的支持,获得多年的预算承诺,除新功能之外还提供维护和升级。
架构:预见并调和不同企业部门之间的数据策略冲突。
职责:明确研发、运营、基础设施、商业智能和各条业务线等能力领域之间的维护、更新和扩展职责。
数据收集:把来自各条业务线的数据整合进公司总体策略,从源头上确保数据干净。
安全和合规:识别敏感数据及其相关的监管和专业要求,执行技术和管理保障措施。
数据管理方面的权威西米恩·施瓦茨(Simeon Schwarz)分享过一个思维实验:假设你正在为某券商创建新的客户关系管理(CRM)分析系统,你问该系统的各个利益相关方,在他们眼中什么是“账户”?答案各不相同:
营销部:“账户是被转化的销售线索。”
财务部:“就财务报表而言,账户是拥有存款、能和我们交易的客户。”
会计部:“账户是我们结算室、账簿和记录系统中的记录条目。”
法律部:“账户是我们通过和客户签署的法律协议,向客户提供的结构化产品。”
虽然每个定义在其利益相关方的眼中都是正确的,但这些定义可能无法调和成单一的一个定义。没有数据治理计划,各个部门的工作流程可能会以不同的方式来对待记录。结果将是各个部门的工作流程产生不同版本的真相,具有不同的监管和合规风险。报告和分析变得不可靠,并使冲突加剧。
营销部通过网页表单收集销售线索,并为每条线索创建一条新的账户记录,但网页表单上可能有错字。法律部从头开始为每份协议创建一条新的记录,导致某些数据重复,如果其数据与包含错字的营销部数据产生冲突,那么还需要进行清理。
由于可追溯至大型主机时代的一个传统,运行整个系统的硬件设施也许是由会计部管理,而会计部可能不想花钱改进营销部的数据收集系统。营销部的人在策划宣传活动时,习惯了直接查看会计部数据库的原始客户记录,这会产生监管和安全风险。
数据治理计划不仅为解决这些问题和预见新的问题提供了知识和制度基础,还根据企业战略计划的推进提供相应的扩展。
关键的术语和趋势
如今首席数据官(CDO)这个职位越来越流行,其诞生就是为了应对数据治理的挑战。负责数据治理的CDO加入企业高管行列,这表明了数据在企业价值和使命中的重要地位。
行业组织和供应商已经开发出各种各样的数据治理框架,其中最著名的包括开放组群架构框架(TOGAF),它以美国国防部较早前一个项目为基础发展而来。TOGAF远远超出了数据治理的范畴,但数据架构是该框架中一个被人们津津乐道的组成部分。此外还有数据治理框架(DGI),它也是从结构化的角度来看待数据治理。
除了上述几种“框架”法以外,有些早期研究项目致力于元数据和情境服务在制定治理政策方面的潜在应用,这是从自下而上的角度来处理问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11