
Python实现快速排序算法及去重的快速排序的简单示例
quick sort快速排序是一种再基础不过的排序算法,使用Python代码写起来相当简洁,这里我们就来看一下Python实现快速排序算法及去重的快速排序的简单示例:
快速排序由于排序效率在同为O(N*logN)的几种排序方法中效率较高,因此经常被采用。
该方法的基本思想是:
1.先从数列中取出一个数作为基准数。
2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
3.再对左右区间重复第二步,直到各区间只有一个数。
现在通过一个实例来说明快排。
比如有一个数组:
6 2 4 5 3
第一步:选取一个基准数,不要被这个名词吓到了,你可以把它看作是一个比较大小的数,因为排序就是比较大小,
比如我选取最后一个数3为基准数,依次把数组的数和3比较,比3小的放左边,比3大的放右边,这样有如下结果:
2 3 6 4 5
第二步:判断区间个数,经过第一步后左边区间只有一个数了,没有数字再和它比较了,因此不需要重复操作,右边区间还有:
6 4 5
重复第一步,选取5作为基准数,得到比较结果:
4 5 6
这样左右两边区间都只有一个数了,这就标志着排序完成,最后把所有区间合并就得到排序结果:
2 3 4 5 6
def quick_sort(array):
less = []; greater = []
if len(array) <= 1:
return array
pivot = array.pop()
for x in array:
if x <= pivot: less.append(x)
else: greater.append(x)
return quick_sort(less) + [pivot] + quick_sort(greater)
list = [2,4,2,6,7,8,1]
print quick_sort(list)
[1, 2, 2, 4, 6, 7, 8]
相比C、C#、JAVA之类的是不是简单多了^.^
TIP:去重的快速排序
如下, 只需要把集合修改为单值元素,这里我们使用Python3来演示:
# -*- coding: utf-8 -*-
import random
L = [2, 3, 8, 4, 9, 5, 6, 5, 6, 10, 17, 11, 2]
def qsort(L):
if len(L)<2: return L
pivot_element = random.choice(L)
small = [i for i in L if i< pivot_element]
#medium = [i for i in L if i==pivot_element]
large = [i for i in L if i> pivot_element]
return qsort(small) + [pivot_element] + qsort(large)
print(qsort(L))
输出:
[2, 3, 4, 5, 6, 8, 9, 10, 11, 17]
也可以直接使用, 集合(set)进行排序和去重.
mylist = list(set(L)) #集合自动排序字符串
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23