
Python程序中用csv模块来操作csv文件的基本使用教程
这篇文章主要介绍了Python程序中用csv模块来操作csv文件的基本使用教程,csv文件中也是格式化的数据,只不过csv本身没有XML和JSON那么流行...需要的朋友可以参考下
CSV全称为“Comma Separated Values”,是一种格式化的文件,由行和列组成,分隔符可以根据需要来变化。
如下面为一csv文件:
csv可以比较方便的在不同应用之间迁移数据。可以将数据批量导出为csv格式,然后倒入到其他应用程序中。很多应用中需要导出报表,也通常用csv格式导出,然后用Excel工具进行后续编辑。
打印发行日期及标题,逐行处理:
for line in open("samples/sample.csv"):
title, year, director = line.split(",")
print year, title
使用csv模块处理:
import csv
reader = csv.reader(open("samples/sample.csv"))
for title, year, director in reader:
print year, title
改变分隔符
创建一csv.excel的子类,并修改分隔符为”;”
# File: csv-example-2.py
import csv
class SKV(csv.excel):
# like excel, but uses semicolons
delimiter = ";"
csv.register_dialect("SKV", SKV)
reader = csv.reader(open("samples/sample.skv"), "SKV")
for title, year, director in reader:
print year, title
如果仅仅仅是改变一两个参数,则可以直接在reader参数中设置,如下:
# File: csv-example-3.py
import csv
reader = csv.reader(open("samples/sample.skv"), delimiter=";")
for title, year, director in reader:
print year, title
将数据存为CSV格式
通过csv.writer来生成一csv文件。
# File: csv-example-4.py
import csv
import sys
data = [
("And Now For Something Completely Different", 1971, "Ian MacNaughton"),
("Monty Python And The Holy Grail", 1975, "Terry Gilliam, Terry Jones"),
("Monty Python's Life Of Brian", 1979, "Terry Jones"),
("Monty Python Live At The Hollywood Bowl", 1982, "Terry Hughes"),
("Monty Python's The Meaning Of Life", 1983, "Terry Jones")
]
writer = csv.writer(sys.stdout)
for item in data:
writer.writerow(item)
实例
下面我们来看一个比较完整的例子,代码说明在注释中:
import csv
# dialect是访问csv文件时需要指定的参数之一,用来确定csv文件的数据格式
# 下面这个函数列举系统支持的dialect有哪些,默认值是'excel',用户也可
# 以从Dialect派生一个类,使用该类的实例作为dialect参数。
print csv.list_dialects()
def test_writer():
# csv文件必须以二进制方式open
with open('eggs.csv', 'wb') as csvfile:
spamwriter = csv.writer(csvfile)
spamwriter.writerow(['Spam'] * 5 + ['Baked Beans'])
spamwriter.writerow(['Spam', 'Lovely Spam', 'Wonderful Spam'])
def test_reader():
with open('eggs.csv', 'rb') as csvfile:
spamreader = csv.reader(csvfile)
for row in spamreader:
print row
# sniffer 用来推断csv文件的格式,不是很准确
def test_sniffer():
with open('eggs.csv', 'wb') as csvfile:
spamwriter = csv.writer(csvfile, delimiter=' ')
spamwriter.writerow(['Spam'] * 2 + ['Baked Beans'])
spamwriter.writerow(['Spam', 'Lovely Spam', 'Wonderful Spam'])
# 通常你需要指定与写入者相同的文件格式才能正确的读取数据
with open('eggs.csv', 'rb') as csvfile:
spamreader = csv.reader(csvfile, delimiter=' ')
for row in spamreader:
print ', '.join(row)
# 如果不知道文件格式,sniffer就可以派上用场了
with open('eggs.csv', 'rb') as csvfile:
# 用sniffer推断文件格式,从而得到dialect
dialect = csv.Sniffer().sniff(csvfile.read(1024))
print dialect.delimiter, dialect.quotechar
# 文件重新移动到头部
csvfile.seek(0)
# 用推断出来的dialect创建reader
reader = csv.reader(csvfile, dialect)
for row in reader:
print ', '.join(row)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23