京公网安备 11010802034615号
经营许可证编号:京B2-20210330
整合信用大数据 打牢经济“基础桩”
“全面、准确的信用数据是建设社会信用体系的基本要素。中国经济的突飞猛进和互联网的发展催生了海量的信用数据,传统的技术手段无法满足庞大复杂的数据整合要求,需要使用大数据技术进行收集和分析,形成更加客观的信用评价体系。”第十二届全国人大代表、浪潮集团董事长兼CEO孙丕恕提出要基于大数据技术,整合政府、机构组织数据并纳入互联网数据,形成全国统一的综合信用数据资源平台,积极培育企业征信等大数据征信产业,分步骤建成全面、统一的社会信用信息体系,为中国社会主义市场经济的发展打牢“基础桩”。
孙丕恕说,政府对大数据在社会信用体系中的建设高度重视。去年7月25日,李克强总理在浪潮集团考察时,现场办公,要求相关部门以云计算、大数据理念,与企业信息技术平台有机对接,建立统一综合信用信息平台,实现“大数据”共享。7月23日,总理在国务院常务会议上也强调构建企业信用信息公示系统,包括国家社会信用信息平台,都要融入“大数据”的思维理念。国家各部委和地方政府也在积极运用大数据技术建设不同领域的信用信息系统,如国家工商总局打造全国企业信用信息公示系统,山东省建设“一网三库一平台”公共信用信息系统等。
那么,我国社会信用体系建设现状如何呢?孙丕恕介绍说,2014年可谓是我国社会信用体系建设的重要一年,不仅出台了《社会信用体系建设规划纲要(2014—2020年)》,国家发改委下发了《社会信用体系建设三年重点工作任务(2014—2016)》,明确提出要制定法律法规和标准体系,对信用信息平台建设和分享等重点工作进行了分工,形成了明确的顶层设计和行动规划。
“这些政策为运用大数据技术加快社会信用体系建设奠定了基础。但在实际推进中,仍需解决条块分割问题,避免出现新的信息孤岛;注重节约成本,实现原有信息资源的复用;丰富信用数据源,保证信用评价的全面性。”孙丕恕表示,国家虽然出台了一系列政策,但在具体实施过程中,仍然面临着一些问题。
为此,孙丕恕建议从组织数据和互联网数据两个方面整合融合入手。首先由政府专门机构整合现有政务业务系统的信用数据,建设基于政府数据的区域、行业信用数据资源平台;然后将金融、商务等层面的商业征信组织数据进行整合,形成区域、行业综合信用数据资源平台;在此基础之上,依托大数据分布式、海量处理技术,按照国家统一的分类目录和数据标准,以及系统间的数据交换机制,将各信用信息平台的数据进行逻辑集中,进行标准化的分类、归并,形成可利用的全国统一信用数据资源平台。
孙丕恕强调,信用数据散落在工商、税务、统计、海关等各业务系统中,政府可以利用大数据技术,在不新建系统的前提下,充分利用原有信息资源,进行各部门内部系统信用数据以及各部门系统间的信用数据整合,这样既能节约成本也能加快建设速度,一举两得。”
孙丕恕还提出了运用大数据技术采集电子商务、社交数据、媒体信息、网络行为、互动评价等互联网公开信息,建设信用数据第二轨的建议。他说,当前信用数据的来源不再局限于传统的财务、信贷、保险、信用历史等传统领域和组织内数据,更扩展到电子商务、社交数据、网络行为等领域。
鉴于此,孙丕恕主张将互联网数据纳入综合信用信息平台中,建立覆盖全社会的信用信息系统。“利用大数据技术萃取互联网中的高价值信用数据,并通过组织内数据和互联网数据的比对,挖掘信用信息之间的关联性,描绘信用主体信用全貌,能够通过更全面的数据来综合评判信用主体,实现数据的全面性和数据保真。”
此外,针对目前由于数据权属关系不清而导致的信用数据采集难题,孙丕恕表示,由于国家也没有相应的制度来保障,建议通过政府授权和市场化手段来规范数据的采集,对于纳入政府信用信息平台的数据,由政府依据有关法规、参照信用信息采集目录,授权大数据采集机构予以采集,其他情况则可以通过市场化的手段来解决。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11