
优化与求解非线性方程组(单变量问题)
求函数极值的问题通常被化简为求解导数为0的点的问题。所以优化问题通常与解非线性方程组联系起来。在前面写点估计中的mle时,我们介绍了R中求解方程极值的函数nlm(),optim().
我们以一元函数f(x)=ln(x)/(1+x)为例求解函数的极值。
f<-function(x) -log(x)/(1+x) #(1)
optimize(f,c(0,10)) #求解(0,10)上的最小值,对于一元函数区间的确定,我们通常可以画图来做初步判断
对于多元函数:
f <- function(x) sum((x-1:length(x))^2)
nlm(f, c(10,10))#这里需要给出迭代的初值
optim(c(10,10),f)
由于nlm,optim,的默认迭代方法不同,得出的结果精度也会有区别。运行上面的代码,我们可以看到nlm给出的最小值点为(1,2),而optim给出的是(1.000348, 2.001812)。
我们也可以通过求解函数的导数为0的点求解函数的极值。还是以1式为例。运行下面的代码:
D(expression(log(x)/(1+x)),"x")
结果为:1/x/(1 + x) - log(x)/(1 + x)^2。 (2)
对于这样的方程,我们通常是没有好的办法让R给出解析解的。我们可以使用一些数值办法来求解方程(2)的数值解。常用的办法有:二分法,newton法,fisher得分法,不动点迭代法。下面我们来简单介绍算法的思想与R的实现代码。
一、二分法
二分法的思想十分简单,利用的就是函数的中值定理,局限也十分明显,只能求解出一个根而且速度较慢。所以函数的单调性,作图都是解决第一个局限的办法。
给出方程(1)的极小值利用二分法的求解程序:
fzero<-function(f,a,b,eps=1e-6){注:跟踪导函数值为0来检测收敛情况是诱人的,但是存在不稳定性,利用绝对收敛准则解决了这一问题(当然用相对收敛准则也是可以的)
二、Newton法
Newton-rapshon迭代是一种快速求根方法。主要利用泰勒级数展开来解决问题。
利用0=g’(x)=g’(x(t))+g’’(x(t))(x-x(t))(后面的等式是近似成立)来近似g’(x)。解上述的这个方程,我们可以得到一个很好的线性近似,迭代方程为:
X(t+1)=x(t)+g’(x(t))/g’’(x(t))
收敛条件依然使用绝对收敛。对于方程(1),有:
> D(expression(log(x)/(1+x)),"x")
1/x/(1 + x) - log(x)/(1 + x)^2
> D(expression(1/x/(1 + x) - log(x)/(1 + x)^2),"x")
-(1/x^2/(1 + x) + 1/x/(1 + x)^2 + (1/x/(1 + x)^2 - log(x) * (2 * (1+ x))/((1 + x)^2)^2))
问题的newton增量为:h(t)=((x(t)+1)(1+1/x(t)-logx(t))/(3+4/x(t)+1/(x(t))^2-2logx(t))
给出方程(1)的极小值利用newton法的求解程序:
三、Fisher得分法
我们知道fisher信息量是对数似然函数的二阶导数的期望的相反数。所以在求解g对应着的mle优化时,使用fisher信息量替换是合理的。这里不再给出程序。
四、切线法
在牛顿法的基础上,我们把导数改为曲线上两点的连线的斜率显然也十分的合理。这便是切线法的基本想法。我们还是给出上面例子的R程序:
f0<-function(x){五、不动点迭代法
除去二分法外,我们所讨论的都是不动点迭代的特例。这里只是简要叙述一下不动点迭代法的原理,并以开篇的例子给出R程序。
不动点定理是一个结果表示函数F在某种特定情况下,至少有一个不动点存在,即至少有一个点x能令函数F(x)=x。在数学中有很多定理能保证函数在一定的条件下必定有一个或更多的不动点,而在这些最基本的定性结果当中存在不动点及其定理被应用的结果具有非常普遍的价值。
ffour<-function(f0,a,eps=1e-6){这里还想说一点的就是关于不动点迭代的条件(百度一下,你就知道),如果不满足的话,需要对导函数前乘上一个系数加以调整,本例中的4*f0(a)+a正是调整刻度的结果。
<pre class="plain" name="code"></pre>
<pre></pre>
<pre></pre>
<pre></pre>
<pre></pre>
<pre></pre>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08