
优化与求解非线性方程组(单变量问题)
求函数极值的问题通常被化简为求解导数为0的点的问题。所以优化问题通常与解非线性方程组联系起来。在前面写点估计中的mle时,我们介绍了R中求解方程极值的函数nlm(),optim().
我们以一元函数f(x)=ln(x)/(1+x)为例求解函数的极值。
f<-function(x) -log(x)/(1+x) #(1)
optimize(f,c(0,10)) #求解(0,10)上的最小值,对于一元函数区间的确定,我们通常可以画图来做初步判断
对于多元函数:
f <- function(x) sum((x-1:length(x))^2)
nlm(f, c(10,10))#这里需要给出迭代的初值
optim(c(10,10),f)
由于nlm,optim,的默认迭代方法不同,得出的结果精度也会有区别。运行上面的代码,我们可以看到nlm给出的最小值点为(1,2),而optim给出的是(1.000348, 2.001812)。
我们也可以通过求解函数的导数为0的点求解函数的极值。还是以1式为例。运行下面的代码:
D(expression(log(x)/(1+x)),"x")
结果为:1/x/(1 + x) - log(x)/(1 + x)^2。 (2)
对于这样的方程,我们通常是没有好的办法让R给出解析解的。我们可以使用一些数值办法来求解方程(2)的数值解。常用的办法有:二分法,newton法,fisher得分法,不动点迭代法。下面我们来简单介绍算法的思想与R的实现代码。
一、二分法
二分法的思想十分简单,利用的就是函数的中值定理,局限也十分明显,只能求解出一个根而且速度较慢。所以函数的单调性,作图都是解决第一个局限的办法。
给出方程(1)的极小值利用二分法的求解程序:
fzero<-function(f,a,b,eps=1e-6){注:跟踪导函数值为0来检测收敛情况是诱人的,但是存在不稳定性,利用绝对收敛准则解决了这一问题(当然用相对收敛准则也是可以的)
二、Newton法
Newton-rapshon迭代是一种快速求根方法。主要利用泰勒级数展开来解决问题。
利用0=g’(x)=g’(x(t))+g’’(x(t))(x-x(t))(后面的等式是近似成立)来近似g’(x)。解上述的这个方程,我们可以得到一个很好的线性近似,迭代方程为:
X(t+1)=x(t)+g’(x(t))/g’’(x(t))
收敛条件依然使用绝对收敛。对于方程(1),有:
> D(expression(log(x)/(1+x)),"x")
1/x/(1 + x) - log(x)/(1 + x)^2
> D(expression(1/x/(1 + x) - log(x)/(1 + x)^2),"x")
-(1/x^2/(1 + x) + 1/x/(1 + x)^2 + (1/x/(1 + x)^2 - log(x) * (2 * (1+ x))/((1 + x)^2)^2))
问题的newton增量为:h(t)=((x(t)+1)(1+1/x(t)-logx(t))/(3+4/x(t)+1/(x(t))^2-2logx(t))
给出方程(1)的极小值利用newton法的求解程序:
三、Fisher得分法
我们知道fisher信息量是对数似然函数的二阶导数的期望的相反数。所以在求解g对应着的mle优化时,使用fisher信息量替换是合理的。这里不再给出程序。
四、切线法
在牛顿法的基础上,我们把导数改为曲线上两点的连线的斜率显然也十分的合理。这便是切线法的基本想法。我们还是给出上面例子的R程序:
f0<-function(x){五、不动点迭代法
除去二分法外,我们所讨论的都是不动点迭代的特例。这里只是简要叙述一下不动点迭代法的原理,并以开篇的例子给出R程序。
不动点定理是一个结果表示函数F在某种特定情况下,至少有一个不动点存在,即至少有一个点x能令函数F(x)=x。在数学中有很多定理能保证函数在一定的条件下必定有一个或更多的不动点,而在这些最基本的定性结果当中存在不动点及其定理被应用的结果具有非常普遍的价值。
ffour<-function(f0,a,eps=1e-6){这里还想说一点的就是关于不动点迭代的条件(百度一下,你就知道),如果不满足的话,需要对导函数前乘上一个系数加以调整,本例中的4*f0(a)+a正是调整刻度的结果。
<pre class="plain" name="code"></pre>
<pre></pre>
<pre></pre>
<pre></pre>
<pre></pre>
<pre></pre>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23