京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别可能存在的突变点,对于洞察现象本质、做出科学决策至关重要。尤其是在处理时间序列数据时,我们常常面临这样的问题:数据随时间是呈现稳定态势,还是有着上升或下降的趋势?在某个时间节点,数据是否发生了显著的突变?Mann-Kendall 检验作为一种强大的非参数统计方法,为我们解决这些问题提供了有效的途径。而借助 SPSS 这一功能强大的统计分析软件,MK 检验的操作变得更加便捷高效。
Mann-Kendall 检验是一种非参数统计检验方法,它的独特优势在于不依赖于数据的具体分布形式,这意味着无论数据是服从正态分布,还是呈现出其他复杂的分布形态,Mann-Kendall 检验都能大显身手,适用于各种类型的数据,包括不满足正态分布的数据。该检验主要用于分析时间序列数据的趋势变化以及检测数据序列中的突变点。 在时间序列 x1 ,x2 ,...,xn中,对于任意两个数据点x i和xj(i<j),若xi<xj,则记为 1;若xi>xj,则记为−1;若xi=xj,则记为 0。通过计算这些秩次关系的统计量,构建检验统计量 Z,并与给定的显著性水平(如 0.05)下的临界值进行比较,判断数据是否存在显著趋势。若∣Z∣>Zα/2,则拒绝原假设,认为数据存在显著趋势;若∣Z∣≤Zα/2,则接受原假设,认为数据不存在显著趋势。
在突变点检测方面,通过构建正序列和逆序列的统计量曲线,观察两条曲线的交点,交点对应的时间点即为可能的突变点。这种基于秩次的计算方式,使得 Mann-Kendall 检验对数据中的异常值具有较强的抗性,不会因为个别极端数据的存在而影响整体的分析结果,大大提高了分析的可靠性。
将时间序列数据导入 SPSS 软件中,确保数据包含时间变量和对应的观测变量,且数据排列整齐,无缺失值或异常值干扰(如有缺失值,需提前进行合理处理,如删除缺失行或使用插补法填充)。这一步是后续分析的基础,只有保证数据的完整性和准确性,才能得到可靠的结果。
在 SPSS 菜单栏中依次点击 “分析”-“非参数检验”-“旧对话框”-“趋势”,打开趋势分析对话框。这一系列操作引导我们进入到 Mann-Kendall 检验的设置界面,SPSS 的菜单设计简洁明了,即使是初次使用的用户也能快速上手。
将观测变量选入 “检验变量列表”,将时间变量选入 “分组变量”,并定义分组变量的范围(如时间序列的起始和结束时间)。通过明确指定观测变量和时间变量,SPSS 能够准确地对数据进行分析,确保分析结果与我们的研究目的一致。
在 “检验类型” 中选择 “Kendall 的协同系数”(此选项可用于趋势分析),若要进行突变点检测,还需在后续通过编程或特定插件辅助完成。虽然 SPSS 的常规界面操作在突变点检测功能上存在一定局限性,但借助外部编程或插件,我们仍然能够充分发挥 Mann-Kendall 检验的全部潜力。
点击 “确定” 按钮,SPSS 将自动计算相关统计量并输出分析结果。结果中主要关注的指标是检验统计量 Z 值及其对应的显著性水平 p 值,若 p<0.05,则表明数据存在显著趋势。这一简洁明了的结果输出方式,让我们能够迅速判断数据的趋势特征,为进一步的分析和决策提供依据。
以某地区近 30 年的年降水量数据为例,利用 SPSS 进行 Mann-Kendall 检验。通过上述步骤,我们将年降水量数据导入 SPSS,设置好相关变量和检验选项后运行分析。假设分析结果得到检验统计量 Z 值为 2.3,对应的 p 值为 0.02,由于 p 值小于 0.05,我们可以得出结论:该地区近 30 年的年降水量存在显著的变化趋势。进一步观察数据,若发现正序列和逆序列的统计量曲线在第 15 年出现交点,则可以推测该地区年降水量在第 15 年可能发生了突变。
这一结果对于该地区的水资源管理、农业规划以及防灾减灾等工作具有重要的参考价值。例如,水资源管理部门可以根据降水量的趋势和突变情况,合理调整水资源调配方案,以应对可能出现的水资源短缺或洪涝灾害;农业部门可以据此优化种植结构,选择更适应降水量变化的农作物品种,提高农业生产的稳定性和可持续性。
Mann-Kendall 检验与 SPSS 软件的结合,为我们提供了一个强大的数据趋势与突变分析工具。通过深入理解 Mann-Kendall 检验的原理,熟练掌握在 SPSS 中的操作流程,并将其应用于实际案例分析,我们能够从复杂的数据中提取有价值的信息,为各个领域的决策提供坚实的数据支持。无论是在科学研究、工程实践还是商业分析中,这种方法都有着广泛的应用前景,帮助我们更好地理解数据背后的规律,把握变化的脉搏,做出更明智的决策。
题库入口:https://edu.cda.cn/goods/show/2845?targetId=4486&preview=0
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06