京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R内存管理与垃圾清理
1.内存查看
memory.limit():查看内存大小
memory.limit(n):申请内存大小
memory.size(NA):查看内存大小
memory.size(T):查看已分配的内存
memory.size(F):查看已使用的内存
2.内存申请
在Windows开始菜单运行:
Rgui -max-mem-size 8GB
与在R GUI中执行:
memory.limit(8000)
都能申请8GB使用内存
3.垃圾清除
rm(x):从workplace中删除变量/文件x
gc():清除内存垃圾
rm(list=ls()):清除workplace中所有变量
4.提升R的性能和突破内存限制的技巧
4.1性能提升的方法
4.1.1 系统升级
升级硬件
使用64位操作系统
利用GPU
租用云计算服务器
4.1.2 开发层面的优化
算法降低算法复杂度
调用C/C++或者Fortran关键的、耗时的计算步骤
缓冲技术减少重复计算
4.1.3 使用层面的优化
充分利用R的内存机制——R的基础优化
增强R的矩阵运算——加速BLAS
并行计算
大规模数据的处理——图片内存限制
使用Revolution R Enterprise(RRE)
4.2 充分利用R的内部机制优化性能
4.2.1向量化
向量化的代码,不要用循环!
利用矩阵运算
利用内置的向量化函数,比如exp、sin、rowMeans、rowSums、colSums、ifelse等
利用Vectorize函数将非向量化的函数改装为向量化的函数
*apply函数族:apply、lapply、sapply、tapply、mapply等
plyr和dplyr包Rstudio发布的data wrangling cheat sheet
##利用矩阵运算
n <- 100000
x1 <- 1:n
x2 <- 1:n
y <- vector()
system.time(
for(i in 1:n){y[i] <- x1[i] + x2[i]}
)
system.time(y <- x1 + x2)
## 利用向量化运算
## 内置的向量化函数
v <- 1:100000
result <- rep(1:100000)
system.time(
for(i in 1:100000){result[i] <- sin(v[i])}
)
system.time(result <- sin(v))
## 利用rowMeans、rowSums、colSums、colMeans等函数对矩阵或数据库做整体处理
colSums(iris[,1:4])
利用R内置的向量化函数,自定义向量化函数,只要在函数定义时每个运算是向量化的。但是在函数定义时用了逻辑判断语句,就会破坏的向量化特征。
func <- function(x){
if(x %% 2 == 0){
ret <- TRUE
}else{
ret <- FALSE}
return(ret)
}
func(34)
func(c(1,2,3,4))
## Warning message:
## In if (x%%2 == 0) { :
## the condition has length > 1 and only the first element will be used
## 在函数的定义中有if语句,不能接受向量作为判断的条件,否则判断第一个元素。
## 利用ifelse函数做向量化的判断
myfunc <- function(x){
ifelse(x %% 2 == 0,TRUE,FALSE)
}
myfunc(c(1,2,3,4))
##利用Vectorize函数将非向量化的函数改装为向量化的函数
funcv <- Vectorize(func)
funcv(c(1,2,3,4))
##利用sapply函数向量化运算
sapply(c(1,2,3,4),func)
4.2.2预先给对象分配内存
R为解释性语言,也是动态语言,如果不事先指定对象的类型和长度,在运算过程会动态分配内存,提高灵活性,但降低了效率。
尽量减少cbind、rbind的使用
## 求出10000个斐波那契数
x <- c(1,1)
i <- 2
system.time(
while(i<10000){
new <- x[i] + x[i-1]
x <- cbind(x,new)
i <- i + 1
}
)
## 指定类型和长度
x <- vector(mode="numeric",100000)
x[1] <- 1
x[2] <- 1
system.time(
while(i<10000){
i <- i + 1
x[i] <- x[i-1] + x[i-2]
}
)
4.2.3避免内存拷贝
假设我们有许多彼此不相关的向量,但因为一些其他的原因,我们希望将每个向量的第三个元素设为8,既然它们是互不相关的,甚至可能具有不同的长度,我们也许会考虑将它们放在一个列表中:
m <- 5000
n <- 1000
z <- list()
for(i in 1:m) z[[i]] <- sample(1:10, n, replace = T)
system.time(for(i in 1:m) z[[i]][3] <- 8)
## 把这些向量一起放到矩阵中
z <- matrix(sample(1:10, m * n, replace = T),nrow = m)
system.time(z[,3] <- 8)
4.2.4删除临时对象和不再用的对象
rm()删除对象
rm(object)删除指定对象,rm(list = ls())可以删除内存中的所有对象
gc()内存垃圾回收
使用rm(object)删除变量,要使用gc()做垃圾回收,否则内存是不会自动释放的。invisible(gc())不显示垃圾回收的结果
4.2.5分析内存的函数
ls()列出特定环境中的对象
object.size()返回R对象的大小(近似的)
memory.profile()分析cons单元的使用情况
memory.size()监测全部内存的使用情况(仅Windows下可用)
memory.size(max=T)返回历史占用过的最大内存;memory.size(max=F)返回目前占用的内存。未做垃圾清理时,已使用内存和已分配内存同步增加,但在垃圾清理后rm(list=ls());gc(),已使用内存会减少,而已分配给R的内存不会改变。
memory.limit()系统可分配的内存上限(仅Windows下可用)
memory.limit(newLimit)更改到一个新的上限。 注意,在32位的R中,封顶上限为4G,你无法在一个程序上使用超过4G (数位上限)。这种时候,可以考虑使用64位的版本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11