京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,如何管理我们的隐私
在大数据时代,保护个人隐私既不能靠简单授权来约束,也不能停留在事后惩罚、追责的粗放思维中,而要在全社会范围实现对个人信息的精细化管理。
最近,有快递公司推出“隐私面单”服务,上面几乎不涉及客户信息,快递员用APP扫码就能联系收件人,方便安全。在网购成为家常便饭的今天,在数据发掘无孔不入的当下,这种保护个人隐私的努力,对每个社会成员都必不可少。
快递途中的信息泄露,只是冰山一角。更多的个人隐私存储在网站服务器、企业数据库中,容易泄露却缺少保护罩。很多人可能都有这样的经验:一打开叫车软件,目的地里赫然有家庭住址;使用搜索引擎,能自动补全脑中想打的字;甚至浏览网页时,弹窗也总是推荐在别处看过的商品……在大数据的算法面前,人的生活轨迹变得没有秘密可言。作为工具的电脑、手机,反过来像是盯着我们的眼睛,让不少人有种说不出的不自在。
生活全面数字化的今天,个人隐私的形态和观念已经发生重大改变。如果说传统意义上,保险柜、房屋构成的物理空间就能守护我们的秘密,那么现代意义上的隐私,却可以转化为数据,借助一根网线、一个路由器传遍各个角落。问题在于,隐私是从个人生活过渡到社会生活的缓冲地带、安全阀门,一旦失去保护,不仅会扰乱日常生活,甚至可能让社会治理顾此失彼。经常接到的各类推销电话,对方甚至连你的喜好和近况都了如指掌,让人不堪其扰更不寒而栗。一些电信诈骗案,甚至酿成社会悲剧。
然而,为了生活便利让渡出一部分个人信息,可能是信息社会必然出现的发展形态。无论是分享经济,还是云计算,方便你我生活的经济形态和先进技术,恰恰建立在信息和数据的广泛共享之上。换句话讲,也只有将我们的生活细节数字化、虚拟化,更多优质的服务和体验才能实现。比如,出行信息能够为城市交通的合理规划提供依据,对手机应用的评价能够帮助开发者提升用户体验,甚至我们发布的周边信息、分享的位置,还能成为公安部门追查犯罪活动的线索。可以想象,当物联网时代到来,我们将不得不让渡出更多的周边信息,以享受更高效便捷的生活。
就发展趋势看,越来越多的个人信息将成为玻璃房间中的摆件,需要我们以更合理的策略,来保护个人的隐私尊严和生活场景的舒适度。首要的就是,不能以“授权”使用的方式让隐私保护变成一句空话。尽管心知每一次搜索、每一次用户注册、每一次账号关联,都有可能让自己的生活陷入他人窥探之下,但大多数人除了随着人流一起登上信息化列车,没有更好的选择。
从这个角度讲,保护个人隐私既不能靠简单授权来约束,也不能停留在事后惩罚、追责的粗放思维中,而要在全社会范围实现对个人信息的精细化管理。这一方面需要法律为个人信息的使用设定底线、细化规则。最新通过的民法总则首次写入了个人信息保护条款,在实践中还要通过“负面清单”等制度,一步步构建起个人信息保护的基本框架。另一方面,掌握海量用户数据的政府机构、企业和社会团体,也应该用好新的技术手段,减少个人信息的不必要曝光,同时建立可追溯的信息保护责任链条,防止信息泄露却无从查起。
我们身处的大数据时代,就生活便捷而言是最好的时代,从隐私保护角度看可能是最坏的时代。无论如何,虚拟化、数字化、信息化已经在重塑日常生活的形态,我们只能不断升级“杀毒软件”,捍卫自己的生活。只要保持清醒,坚持扬长避短,相信我们能在信息玻璃屋上建立起属于这个时代的生活安全感。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29