
浅谈大数据分析与其中的传感器技术应用
所谓大数据,指的是所涉及的资料量规模巨大到无法透过现有的实物计量软件,在合理时间内达到采集、管理并整理出更有价值和意义的结论。这些数据包罗万象,不仅包括人们在互联网上发布的信息,全世界的工业设备、汽车、电表上有着无数的传感器,随时测量和传递着有关位置、运动、震动、温度、湿度乃至空气中化学物质的变化,也产生了海量的数据信息。因此,大数据也被称为是继云计算、物联网之后信息技术领域的又一次颠覆性变革。
我国丰富的数据资源已经成为构建大数据决策体系的重要基础。但目前由于数据壁垒等原因,我国尚未建立起完善的大数据经济标准体系。
专家认为,大数据作为一种重要的战略资产,已经不同程度地渗透到每个行业领域和部门,其深度应用不仅有助于企业经营活动,还有利于推动国民经济发展。在宏观层面,大数据使经济决策部门能够更敏锐地把握经济走向,制定并实施科学的经济政策。
机械设备上的传感器应用,资料图
同时,传统企业也可以利用大数据建立反映经济走势的模型。例如,进作为中国工程机械的龙头企业,三一重工在20万余台工程机械上加装传感器,历经多年产生的大量数据,建立了“挖掘机指数”。通过这些数据,可以实时监测全国设备的作业情况、关键零件磨损、油耗和承压情况等,形成5000多个维度、每天2亿条、超过40TB的大数据资源。该指数还能显示设备的施工时长和开工率等数据,在一定程度上反映出经济走势。
再如,近日,据日媒报道,日本丰田、NEC等20多家日本企业和研究机构将以产官学合作的形式,共同开发用于医疗和制造一线的人工智能。现在,主流的人工智能都需要以庞大的数据为基础,而上述团队将开发的是,虽然数据有限、但能根据用途发现人类注意不到的最佳答案的基础技术。
海尔人工智能相关负责人也表示,人工智能将会给家电领域的商业模式提供一些新的途径和新的思考,如果实现互联互通、多传感器,并结合大数据、云计算,便可进一步通过算法模型分析用户的行为,建立用户的画像,做一些更精准的信息挖掘和信息推荐。这样,就可以把传统家电的售卖升级为一种长线的、智能服务的模式。如果这种模式能够运作起来,后续很多商业模式就能打通。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02