
import pandas as pd
d = pd.DataFrame(['a', 'b', 'c'],columns = ['A'])
d
A | |
---|---|
0 | a |
1 | b |
2 | c |
将某列元素拼接一列特定字符串
d['A'].str.cat(['A', 'B', 'C'], sep=',')
0 a,A
1 b,B
2 c,C
Name: A, dtype: object
将某列的元素合并为一个字符串
d['A'].str.cat(sep=',')
'a,b,c'
import numpy as np
import pandas as pd
d = pd.DataFrame(['a_b_c', 'c_d_e', np.nan, 'f_g_h'],columns = ['A'])
d
A | |
---|---|
0 | a_b_c |
1 | c_d_e |
2 | NaN |
3 | f_g_h |
将某列的字符串元素进行切分
d['A'].str.split('_')
0 [a, b, c]
1 [c, d, e]
2 NaN
3 [f, g, h]
Name: A, dtype: object
d = pd.DataFrame(['a_b_c', 'c_d_e', np.nan, 'f_g_h'],columns = ['A'])
d['A']
0 a_b_c
1 c_d_e
2 NaN
3 f_g_h
Name: A, dtype: object
d['A'].str.get(2)
0 b
1 d
2 NaN
3 g
Name: A, dtype: object
d = pd.DataFrame(['a_b_c', 'c_d_e', np.nan, 'f_g_h'],columns = ['A'])
d['A']
0 a_b_c
1 c_d_e
2 NaN
3 f_g_h
Name: A, dtype: object
d['A'].str.join("!")
0 a!_!b!_!c
1 c!_!d!_!e
2 NaN
3 f!_!g!_!h
Name: A, dtype: object
d['A'].str.contains('d')
0 False
1 True
2 NaN
3 False
Name: A, dtype: object
d.fillna('0')[d.fillna('0')['A'].str.contains('d')]
A | |
---|---|
1 | c_d_e |
d.fillna('0')[d['A'].fillna('0').str.contains('d|e')]
#表示或的关系用"A|B",表示且用'A.*B|B.*A'
A | |
---|---|
1 | c_d_e |
d['A'].str.replace("_", ".")
0 a.b.c
1 c.d.e
2 NaN
3 f.g.h
Name: A, dtype: object
d['A'].str.repeat(3)
0 a_b_ca_b_ca_b_c
1 c_d_ec_d_ec_d_e
2 NaN
3 f_g_hf_g_hf_g_h
Name: A, dtype: object
d['A'].str.pad(10, fillchar="0")
0 00000a_b_c
1 00000c_d_e
2 NaN
3 00000f_g_h
Name: A, dtype: object
d['A'].str.pad(10, side="right", fillchar="?")
0 a_b_c?????
1 c_d_e?????
2 NaN
3 f_g_h?????
Name: A, dtype: object
d['A'].str.center(10, fillchar="?")
0 ??a_b_c???
1 ??c_d_e???
2 NaN
3 ??f_g_h???
Name: A, dtype: object
d['A'].str.ljust(10, fillchar="?")
0 a_b_c?????
1 c_d_e?????
2 NaN
3 f_g_h?????
Name: A, dtype: object
d['A'].str.rjust(10, fillchar="?")
0 ?????a_b_c
1 ?????c_d_e
2 NaN
3 ?????f_g_h
Name: A, dtype: object
d['A'].str.zfill(10)
0 00000a_b_c
1 00000c_d_e
2 NaN
3 00000f_g_h
Name: A, dtype: object
d['A'].str.wrap(3)
0 a_bn_c
1 c_dn_e
2 NaN
3 f_gn_h
Name: A, dtype: object
d['A'].str.slice(1,3)
0 _b
1 _d
2 NaN
3 _g
Name: A, dtype: object
d['A'].str.slice_replace(1, 3, "?")
0 a?_c
1 c?_e
2 NaN
3 f?_h
Name: A, dtype: object
d['A'].str.count("b")
0 1.0
1 0.0
2 NaN
3 0.0
Name: A, dtype: float64
d['A'].str.startswith("a")
0 True
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.endswith("e")
0 False
1 True
2 NaN
3 False
Name: A, dtype: object
d['A'].str.findall("[a-z]")
0 [a, b, c]
1 [c, d, e]
2 NaN
3 [f, g, h]
Name: A, dtype: object
d['A'].str.match("[d-z]")
0 False
1 False
2 NaN
3 True
Name: A, dtype: object
d['A'].str.extract("([d-z])")
0 | |
---|---|
0 | NaN |
1 | d |
2 | NaN |
3 | f |
d['A'].str.len()
0 5.0
1 5.0
2 NaN
3 5.0
Name: A, dtype: float64
df = pd.DataFrame(['a_b ', ' d_e ', np.nan, 'f_g '],columns = ['B'])
df['B']
0 a_b
1 d_e
2 NaN
3 f_g
Name: B, dtype: object
df['B'].str.strip()
0 a_b
1 d_e
2 NaN
3 f_g
Name: B, dtype: object
df['B'].str.rstrip()
0 a_b
1 d_e
2 NaN
3 f_g
Name: B, dtype: object
df['B'].str.lstrip()
0 a_b
1 d_e
2 NaN
3 f_g
Name: B, dtype: object
d['A'] .str.partition('_')
0 | 1 | 2 | |
---|---|---|---|
0 | a | _ | b_c |
1 | c | _ | d_e |
2 | NaN | NaN | NaN |
3 | f | _ | g_h |
d['A'].str.rpartition('_')
0 | 1 | 2 | |
---|---|---|---|
0 | a_b | _ | c |
1 | c_d | _ | e |
2 | NaN | NaN | NaN |
3 | f_g | _ | h |
d['A'].str.lower()
0 a_b_c
1 c_d_e
2 NaN
3 f_g_h
Name: A, dtype: object
d['A'].str.upper()
0 A_B_C
1 C_D_E
2 NaN
3 F_G_H
Name: A, dtype: object
d['A'].str.find('d')
0 -1.0
1 2.0
2 NaN
3 -1.0
Name: A, dtype: float64
d['A'].str.rfind('d')
0 -1.0
1 2.0
2 NaN
3 -1.0
Name: A, dtype: float64
d['A'].str.index('_')
0 1.0
1 1.0
2 NaN
3 1.0
Name: A, dtype: float64
d['A'].str.rindex('_')
0 3.0
1 3.0
2 NaN
3 3.0
Name: A, dtype: float64
d['A'].str.capitalize()
0 A_b_c
1 C_d_e
2 NaN
3 F_g_h
Name: A, dtype: object
d['A'].str.capitalize()
0 A_b_c
1 C_d_e
2 NaN
3 F_g_h
Name: A, dtype: object
d['A'].str.isalnum()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isalpha()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isdigit()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isspace()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.islower()
0 True
1 True
2 NaN
3 True
Name: A, dtype: object
d['A'].str.isupper()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.istitle()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isnumeric()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
d['A'].str.isdecimal()
0 False
1 False
2 NaN
3 False
Name: A, dtype: object
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17